2.1 Exercise Set

1.

\qquad
$\angle 2=$
2.

$\angle 1=$ \qquad
\qquad
3.

$\angle 1=$ \qquad
\qquad
$\angle 2=$ \qquad
\qquad
4.

$\angle 1=$ \qquad
\qquad
$\angle 2=$ \qquad
\qquad
5.

$\angle 1=$ \qquad
\qquad
$\angle 2=$ \qquad
$\angle 3=$ \qquad

Copyright © by Crescent Beach Publishing - All rights reserved. Cancopy © has ruled that this book is not covered by their licensing agreement. No part of this publication may be reproduced without explicit permission of the publisher.
6.

$\angle 1=$ \qquad
$\angle 2=$ \qquad
\qquad
7.

$\angle 1=$ \qquad
\qquad
$\angle 2=$ \qquad
\qquad
8.

$\angle 1=$ \qquad
\qquad
$\angle 2=$ \qquad
\qquad
$\angle 3=$ \qquad
\qquad
9.

$\angle 1=$ \qquad
\qquad
$\angle 2=$ \qquad
\qquad
$\angle 3=$ \qquad
\qquad
10.

$$
\begin{aligned}
& \angle 1= \\
& \angle 2= \\
& \angle 3=
\end{aligned}
$$

\qquad
\qquad
$\angle 4=$ \qquad
11.

$\angle 1=$ \qquad
\qquad
$\angle 2=$ \qquad
\qquad
\qquad
12.

13.

14.

15.

$\angle 1=$ \qquad
\qquad
$\angle 2=$ \qquad
\qquad
16.

$\angle 1=$ \qquad
\qquad
$\angle 2=$ \qquad
\qquad

Copyright © by Crescent Beach Publishing - All rights reserved. Cancopy © has ruled that this book is not covered by their licensing agreement. No part of this publication may be reproduced without explicit permission of the publisher.
17.

$\angle 1=$ \qquad
$\angle 2=$ \qquad
\qquad
\qquad
18.

$\angle 1=$ \qquad
\qquad
19.

$\angle 1=$ \qquad
\qquad
20.

$\angle 1=$ \qquad
\qquad
21.

$\angle 1=$ \qquad
\qquad
$\angle 2=$ \qquad
\qquad
22.

23.

24.

25.

$\angle 1=$ \qquad
\qquad
$\angle 2=$ \qquad
\qquad
Fold a piece of paper twice such that the folds meet. What is $\angle A B C$ of the fold? Why?
26.

$\angle 1=$ \qquad
\qquad
$\angle 2=$ \qquad
\qquad
$\angle 3=$ \qquad
\qquad
27.

$$
\begin{aligned}
& \angle 1= \\
& \angle 2= \\
& \angle 3=
\end{aligned}
$$

\qquad
\qquad
\qquad
28.

$\angle 1=$
$\angle 2=$ \qquad
$\angle 3=$ \qquad
$\angle 4=$ \qquad
\qquad
\qquad
29.

$$
\begin{aligned}
& \angle 1= \\
& \angle 2= \\
& \angle 3= \\
& \angle 4= \\
&
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
30.

$\angle 1=$ \qquad
\qquad
31.

$\angle 1=$ \qquad
$\angle 2=$ \qquad
\qquad

Copyright © by Crescent Beach Publishing - All rights reserved. Cancopy © has ruled that this book is not covered by their licensing agreement. No part of this publication may be reproduced without explicit permission of the nublisher
32.

33.

$$
\angle 1=
$$

$\angle 2=$ \qquad
\qquad
\qquad
34.

$\angle 1=$ \qquad
\qquad
$\angle 2=$ \qquad
$\angle 3=$ \qquad
\qquad
35.

$$
x=
$$

\qquad
\qquad
$y=$ \qquad
\qquad
36.

$\angle 1=$ \qquad
\qquad
$\angle 2=$ \qquad
\qquad

Copyright © by Crescent Beach Publishing - All rights reserved. Cancopy © has ruled that this book is not covered by their licensing agreement. No part of this publication may be reproduced without explicit permission of the publisher.

2.1 Exercise Set (Reason answers may vary)

1. $\angle 1=80^{\circ}$ angles on a line add to $180^{\circ} ; \angle 2=80^{\circ}$ vertical angles
2. $\angle 1=60^{\circ}$ angles at a point add to 360°
3. $\angle 1=100^{\circ}$ supplementary angles; $\angle 2=100^{\circ}$ corresponding angles
4. $\angle 1=65^{\circ}$ co-interior angle plus angle bisector; $\angle 2=115^{\circ}$ co-interior angles
5. $\angle 1=20^{\circ}$ alternate interior angles; $\angle 2=60^{\circ}$ alternate interior angles; $\angle 3=120^{\circ}$ co-interior angles
6. $\angle 1=55^{\circ}$ co-interior angles; $\angle 2=15^{\circ}$ co-interior angles
7. $\angle 1=120^{\circ}$ sum of angles in a triangle; $\angle 2=60^{\circ}$ supplementary angles
8. $\angle 1=35^{\circ}$ supplementary angles plus sum of angles in a triangle; $\angle 2=35^{\circ}$ isosceles triangle; $\angle 3=55^{\circ}$ sum of angles in a triangle
9. $\angle 1=57^{\circ}$ complementary angles; $\angle 2=123^{\circ}$ co-interior angles; $\angle 3=123^{\circ}$ alternate interior angles
10. $\angle 1=45^{\circ}$ angles on a line; $\angle 2=70^{\circ}$ alternate interior angles; $\angle 3=70^{\circ}$ isosceles triangle; $\angle 4=65^{\circ}$ isosceles triangle
11. $\angle 1=55^{\circ}$ angles in a triangle; $\angle 2=50^{\circ}$ alternate interior angles
12. $\angle 1=70^{\circ}$ supplementary angles plus sum of angles in a triangle; $\angle 2=70^{\circ}$ vertical angles
13. $\angle 1=35^{\circ}$ co-interior angles
14. $\angle 1=65^{\circ}$ alternate interior angles; $\angle 2=115^{\circ}$ supplementary angles
15. $\angle 1=120^{\circ}$ equilateral triangle plus supplementary angles; $\angle 2=30^{\circ}$ isosceles triangle
16. $\angle 1=70^{\circ}$ isosceles triangle; $\angle 2=60^{\circ}$ angles on a line
17. $\angle 1=37 \frac{1}{2}^{\circ}$ vertical angles plus co-interior angles; $\angle 2=37 \frac{1}{2}^{\circ}$ alternate interior angles
18. $\angle 1=121^{\circ}$ corresponding angles plus supplementary angles
19. $\angle 1=139^{\circ}$ co-interior angles plus supplementary angles
20. $\angle 1=120^{\circ}$ supplementary angles
21. $\angle 1=55^{\circ}$ corresponding angles; $\angle 2=60^{\circ}$ co-interior angles
22. $\angle 1=100^{\circ}$ alternate interior angles; $\angle 2=60^{\circ}$ alternate interior angles
23. $\angle 1=25^{\circ}$ sum of angles in a triangle; $\angle 2=80^{\circ}$ angles on a line
24. $\angle 1=90^{\circ}$ sum of angles on a line plus angle bisector
25. $\angle 1=55^{\circ}$ sum of angles in a triangle and angle bisector; $\angle 2=80^{\circ}$ sum of angles in a triangle
26. $\angle 1=130^{\circ}$ supplementary angles; $\angle 2=25^{\circ}$ isosceles triangle; $\angle 3=65^{\circ}$ isosceles triangle
27. $\angle 1=45^{\circ}$ isosceles right triangle; $\angle 2=$ angles on a line; $\angle 3=50^{\circ}$ sum of angles in a triangle
28. $\angle 1=40^{\circ}$ sum of angles in a triangle and angle bisector; $\angle 2=70^{\circ}$ angles on a line; $\angle 3=110^{\circ}$ sum of angles in a triangle plus vertical angles; $\angle 4=150^{\circ}$ supplementary angles
29. $\angle 1=120^{\circ}$ co-interior angles; $\angle 2=150^{\circ}$ co-interior angles; $\angle 3=90^{\circ}$ angles at a point; $\angle 4=60^{\circ}$ alternate interior angles plus complementary angles
30. $\angle 1=90^{\circ}$ angles on a line, co-interior angles, and sum of angles in a triangle plus sum of angles in a triangle; $\angle 2=90^{\circ}$ sum of angles in a triangle
31. $\angle 1=60^{\circ}$ co-interior angles plus angle bisector; $\angle 2=90^{\circ}$ sum of angles in a triangle
32. $\angle 1=50^{\circ}$ sum of angles in a triangle; $\angle 2=70^{\circ}$ alternate interior angles; $\angle 3=30^{\circ}$ co-interior angles or sum of angles in a triangle
33. $\angle 1=40^{\circ}$ angle bisector plus angles on a line; $\angle 2=70^{\circ}$ corresponding angles
34. $\angle 1=100^{\circ}$ isosceles triangle and sum of angles in a triangle; $\angle 2=70^{\circ}$ alternate interior angles plus isosceles triangle; $\angle 3=30^{\circ}$ sum of angles in a triangle
35. $x=90^{\circ}$ co-interior angles; $y=20^{\circ}$ co-interior angles
36. $\angle 1=40^{\circ}$ angle bisector plus corresponding angles; $\angle 2=140^{\circ}$ alternate interior angles plus supplementary angles
37. a) Equal angles would be 60° each, therefore lines are not parallel.
b) Parallel lines cannot have different corresponding angles. $61^{\circ} / 23^{\circ}$ should be $62^{\circ} / 22^{\circ}$ or $62^{\circ} / 22^{\circ}$ should be $61^{\circ} / 23^{\circ}$.
c) If lines are parallel, then 88° should be 90°.
d) If lines are parallel, then 100° should be 90°.
e) If perpendicular, then 44° should be 45°.
f) If angles are bisected, then 124° should be 125° or 70° should be 68°.
g) If lines are parallel, then 45° should be 40° or 120° should be 125°.
h) If angles are bisected, then 116° should be 115° or 50° should be 52°.
