2.2 Exercise Set

1. Given: $\mathrm{c} \| \mathrm{d}$

$$
\angle 1=\angle 3
$$

Prove: a || b

1.

Statement	Reason	
$\mathrm{c} \\| \mathrm{d}$	given	
$\angle 3=\angle 4$	-	
$\angle 1=\angle 4$	alternate interior $\angle \mathrm{s}$	

3. Given: $\angle \mathrm{ACD}=\angle \mathrm{CDF}$

$$
\angle 1=\angle 4
$$

Prove: BC\|DE

	Statement	Reason	
1.	$\angle \mathrm{ACD}=\angle \mathrm{CDF}$		
2.	$\angle 1+\angle 2=\angle 3+\angle 4$	addition of angles	
3.	$\angle 1=\angle 4$		
4.	$\angle 1+\angle 2=\angle 3+\angle 1$		
5.	$\angle 2=\angle 3$		
6.	$\mathrm{BC} \\| \mathrm{DE}$		

2. Given: $\angle 1=\angle 2$

$$
\angle 1=\angle 3
$$

Prove: BC\|EF

	Statement	Reason
1.	$\angle 1=\angle 2$	
2.	$\angle 1=\angle 3$	
3.	$\angle 2=\angle 3$	
4.		

4. Given: BE bisects $\angle \mathrm{ABC}$ CE bisects $\angle \mathrm{BCD}$ $\angle 2+\angle 3=90^{\circ}$

Prove: $A B \| C D$

5. Given: $\angle 1=\angle 5$

Prove: $\angle 7=\angle 8$

Statement	Reason
$\angle 1=\angle 5$	

2. \qquad vertical angles
3. \qquad third angle of a Δ
4. \qquad supplementary $\angle \mathrm{s}$
to equal $\angle \mathrm{s}$
5. Given: $\mathrm{AB} \perp \mathrm{BD}$
$\mathrm{DE} \perp \mathrm{AE}$
Prove: $\angle \mathrm{A}=\angle \mathrm{D}$

	Statement	Reason
1.	$\mathrm{AB} \perp \mathrm{BD}$	
2.	$\mathrm{DE} \perp \mathrm{AE}$	
3.	$\angle \mathrm{B}=\angle \mathrm{E}$	
4.	$\angle 1=\angle 2$	
5.	$\angle \mathrm{A}=\angle \mathrm{D}$	

8. Given: $\mathrm{BC} \| \mathrm{EF}$

$$
\angle 1=\angle 3
$$

Prove: $\mathrm{AB} \| \mathrm{DE}$

E

Statement	Reason

Copyright © by Crescent Beach Publishing - All rights reserved. Cancopy © has ruled that this book is not covered by their licensing agreement. No part of this publication may be reproduced without explicit permission of the publisher.
9. Given: $\angle 2=\angle 6$

Prove: $\angle 1=\angle 5$

11. Given: $\mathrm{AB} \perp \mathrm{BC}$
$\mathrm{DE} \perp \mathrm{BC}$
Prove: $\angle 1=\angle 2$

Statement	Reason

10. Given: $\angle 1=\angle 3$ $\angle 4=\angle 5$
Prove: $\mathrm{AB} \| \mathrm{DE}$

11. Given: $\angle 1=\angle 5$

Prove: $\angle 2=\angle 4$

Statement	Reason

13. Given:
$\angle 3$ is complementary to \angle $\angle 4$ is complementary to \angle
AD bisects $\angle \mathrm{BAC}$

Prove: $\angle 3=\angle 4$

Statement	Reason

15. Given: $B C \perp C D$
$\mathrm{AC} \perp \mathrm{CE}$
Prove: $\angle 1=\angle 3$

16. Given: $\mathrm{AC} \perp \mathrm{BD}$

BD bisects $\angle \mathrm{EBF}$

Prove: $\angle 1=\angle 4$

Statement	Reason

Copyright © by Crescent Beach Publishing - All rights reserved. Cancopy © has ruled that this book is not covered by their licensing agreement. No part of this publication may be reproduced without explicit permission of the publisher.
17. Given: $\angle 2=\angle 3$

Prove:
$\overrightarrow{\mathrm{CD}}$ bisects $\angle \mathrm{BCE}$

19. Given: $A B \| C D$
$\overrightarrow{\mathrm{BE}}$ bisects $\angle \mathrm{ABC}$ $\overrightarrow{\mathrm{CF}}$ bisects $\angle \mathrm{BCD}$

Prove: $\angle 2=\angle 3$

20. Given: $\angle 1=\angle 2$ Prove: $\angle 3=\angle 4$

Statement	Reason

Statement	Reason

18. Given: $\angle 1=\angle 3$
$A B \| C D$
Prove: $A D \| B C$

Statement	Reason

21. Given: $\mathrm{c} \perp \mathrm{b}$
$\mathrm{a} \| \mathrm{b}$
Prove: $\mathrm{c} \perp \mathrm{a}$

22. Given: $\mathrm{AB} \perp \mathrm{BF}$

Prove: $\angle 7=\angle 8$

Statement	Reason

24. Given: BD bisects $\angle \mathrm{ABC}$
$\mathrm{AB} \perp \mathrm{AC}$
$\mathrm{DC} \perp \mathrm{BC}$

Prove: $\angle 4=\angle 5$

2.2 Exercise Set (Reasons can vary)

1.	Statement	Reason
	$\angle 1=\angle 3$	given
2.		
3.		corresponding \angle
4.		both $=$ to $\angle 3$

2.

	Statement	Reason	
		given	
2.		given	
3.		both = to $\angle 1$	
4.	$\mathrm{BC} \\| \mathrm{EF}$	corresponding $\angle \mathrm{s}$	

3.

4.

Statement	Reason
1.	given
2.	
3.	given
4. $\angle 3=\angle 4$	definition of bisector
5.	given
6.	
7.	substitution
8.	co-interior $\angle \mathrm{s}$

5.

	Statement	Reason
1.		given
2.	$\angle 3=\angle 4$	
3.	$\angle 2=\angle 6$	
4.	$\angle 7=\angle 8$	

6.

Statement	Reason
	given
2.	given
3.	each 90°
4.	vertical $\angle \mathrm{s}$
5.	3rd \angle of a Δ

For questions 7 to 24, proof methods can vary.
7.

Statement	Reason	
$\mathrm{a} \\| \mathrm{b}$	given	
$\angle 2=\angle 3$	alternate interior $\angle \mathrm{s}$	
$\angle 2=\angle 4$	given	
$\angle 3=\angle 4$	both $=$ to $\angle 2$	
$\mathrm{c} \\| \mathrm{d}$	corresponding $\angle \mathrm{s}$	

8.

Statement	Reason	
$\mathrm{BC} \\| \mathrm{EF}$	given	
$\angle 2=\angle 3$	corresponding $\angle \mathrm{s}$	
$\angle 1=\angle 3$	given	
$\angle 1=\angle 2$	both $=$ to $\angle 3$	
$\mathrm{AB} \\| \mathrm{DE}$	corresponding $\angle \mathrm{s}$	

9.

Statement	Reason
$\angle 2=\angle 6$	given
$\angle 3=\angle 4$	vertical $\angle \mathrm{s}$
$\angle 1=\angle 5$	3rd \angle of a Δ

10.

Statement	Reason
$\angle 1=\angle 3$	given
$\angle 4=\angle 5$	given

13.

Statement	Reason
$\angle 3$ comp to $\angle 1$	given
$\angle 1+\angle 3=90^{\circ}$	defn of complementary
$\angle 4$ comp to $\angle 2$	given
$\angle 2+\angle 4=90^{\circ}$	defn of complementary
$\angle 1+\angle 3=\angle 2+\angle 4$	both = to 90°
AD bisects $\angle \mathrm{BAC}$	given
$\angle 1=\angle 2$	defn of bisect
$\angle 3=\angle 4$	subtraction

14.

Statement	Reason
$\angle 1$ supp to $\angle 4$	given

$\angle 3+\angle 4=180^{\circ} \quad$ supplementary $\angle \mathrm{s}$
$\angle 1=\angle 3$
$\angle 1=\angle 2$
$\angle 2=\angle 3$
both $=$ to 180°
vertical angles
both $=$ to $\angle 1$

16. Statement	Reason
$\mathrm{AC} \perp \mathrm{BD}$	given
$\angle 1+\angle 2=\angle 3+\angle 4$	$\perp \angle \mathrm{~s}$ are $=$
BD bisects $\angle \mathrm{EBF}$	given
$\angle 2=\angle 3$	defn of bisect
$\angle 1=\angle 4$	subtraction

Statement	Reason
$\mathrm{BC} \perp \mathrm{CD}$	given
$\angle \mathrm{BCD}=90^{\circ}$	defn of \perp
$\angle 1+\angle 2=90^{\circ}$	$\angle \mathrm{BCD}=\angle 1+\angle 2$
$\mathrm{AC} \perp \mathrm{CE}$	given
$\angle \mathrm{ACE}=90^{\circ}$	defn of \perp
$\angle 3+\angle 2=90^{\circ}$	$\angle \mathrm{ACE}=\angle 3+\angle 2$
$\angle 1=\angle 3$	subtraction $($ steps 3 and 6$)$

15.
16. | Statement | Reason |
| :---: | :--- |
| $\mathrm{AC} \perp \mathrm{BD}$ | given |
| $\angle 1+\angle 2=\angle 3+\angle 4$ | $\perp \angle \mathrm{~s}$ are $=$ |
| BD bisects $\angle \mathrm{EBF}$ | given |
| $\angle 2=\angle 3$ | defn of bisect |
| $\angle 1=\angle 4$ | subtraction |

Copyright © by Crescent Beach Publishing - All rights reserved. Cancopy © Cos ruled that this book is not covered by their licensing agreement. No part of this publication may be reproduced without explicit permission of the publisher.

17. | Statement | Reason |
| ---: | :--- |
| $\angle 1=\angle 2$ | vertical $\angle \mathrm{s}$ |
| $\angle 2=\angle 3$ | given |
| $\angle 1=\angle 3$ | both $=\angle 2$ |
| CD bisects $\angle \mathrm{BCE}$ | defn of bisect |
18.

Statement	Reason	
$\mathrm{AB} \\| \mathrm{CD}$	given	
$\angle 2=\angle 3$	corresponding $\angle \mathrm{s}$	
$\angle 1=\angle 3$	given	
$\angle 1=\angle 2$	both $=\angle 3$	
$\mathrm{AD} \\| \mathrm{BC}$	corresponding $\angle \mathrm{s}$	

19.

Statement	Reason	
$\mathrm{AB} \\| \mathrm{CD}$	given	
$\angle 1+\angle 2=\angle 3+\angle 4$	alternate interior $\angle \mathrm{s}$	
BE bisects $\angle \mathrm{ABC}$	given	
$\angle 1=\angle 2$	defn of bisect	
CF bisects $\angle \mathrm{BCD}$	given	
$\angle 3=\angle 4$	defn of bisect	
$\angle 2+\angle 2=\angle 3+\angle 3$	substitution	
$\angle 2=\angle 3$	division	

20.

Statement	Reason
$\angle 1=\angle 2$	given
$\angle \mathrm{A}=\angle \mathrm{A}$	same \angle
$\angle 3=\angle 4$	3rd $\angle \mathrm{s}$ of a $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADE}$

2

Statement	Reason	
$\mathrm{a} \\| \mathrm{b}$	given	
$\angle 1=\angle 2$	corresponding $\angle \mathrm{s}$	
$\mathrm{c} \perp \mathrm{b}$	given	
$\angle 2=90^{\circ}$	$\perp \angle \mathrm{s}=90^{\circ}$	
$\angle 1=90^{\circ}$	$\angle 1=\angle 2$	
$\mathrm{c} \perp \mathrm{a}$	$90^{\circ} \angle \mathrm{s}$ are \perp	

22. | Statement | Reason |
| ---: | :--- |
| $\mathrm{AB} \perp \mathrm{BF}$ | given |
| $\mathrm{FG} \perp \mathrm{BF}$ | given |
| $\mathrm{DH} \perp \mathrm{BF}$ | given |
| $\mathrm{AB}\\|\mathrm{DH}\\| \mathrm{EG}$ | all \perp to BF |
| $\angle 1=\angle 7$ | alternate interior $\angle \mathrm{s}$ |
| $\angle 2=\angle 8$ | alternate interior $\angle \mathrm{s}$ |
| $\angle 1=\angle 2$ | given |
| $\angle 7=\angle 8$ | substitution |
23.

Statement	Reason	
$\mathrm{BC} \\| \mathrm{AD}$	given	
$\angle 1+\angle 2+\angle 3+\angle 4=180^{\circ}$	co-interior $\angle \mathrm{s}$	
$\angle 1=\angle 2$	given	
$\angle 3=\angle 4$	given	
$\angle 2+\angle 2+\angle 3+\angle 3=180^{\circ}$	substitution	
$\angle 2+\angle 3=90^{\circ}$	division	
$\angle 2+\angle 3+\angle \mathrm{BEA}=180^{\circ}$	sum of $\angle \mathrm{s}$ in a \triangle	
$90^{\circ}+\angle \mathrm{BEA}=180^{\circ}$	substitution	
$\angle \mathrm{BEA}=90^{\circ}$	subtraction	
$\mathrm{BE} \perp \mathrm{AE}$	defn of \perp	

24.

Statement	Reason
BD bisects $\angle \mathrm{ABC}$	given
$\angle 1=\angle 2$	defn of bisect
$\mathrm{AB} \perp \mathrm{AC}$	given
$\angle 3=90^{\circ}$	defn of \perp
$\angle 1+\angle 6=90^{\circ}$	sum of $\angle \mathrm{s}$ in a Δ
$\mathrm{DC} \perp \mathrm{BC}$	given
$\angle 2+\angle 4=90^{\circ}$	sum of $\angle \mathrm{s}$ in a \triangle
$\angle 1+\angle 6=\angle 2+\angle 4$	both $=$ to 90°
$\angle 2+\angle 6=\angle 2+\angle 4$	substitution
$\angle 6=\angle 4$	subtraction
$\angle 5=\angle 6$	vertical angles
$\angle 4=\angle 5$	both = to $\angle 6$

2.3 Exercise Set

1. a) 3240°
b) 2700°
c) 6660°
d) 3780°
e) $(x-2) 180^{\circ}$
2. a) 4
b) 15
c) 10
d) 360
e) 15
f) 24
3. a) 90°
b) 135°
c) 152.3°
d) 158.8°
e) $\frac{(x-2)}{x} 180^{\circ}$
4. a) 20°
b) 32.7°
c) 15.7°
d) 17.1°
e) 12.4°
f) 8°
5. a) $\angle 1=72^{\circ}, \angle 2=108^{\circ}$
b) $720^{\circ}, 360^{\circ}$
c) $\angle 1=168^{\circ}, \angle 2=42^{\circ}$
d) $67 \frac{1}{2}$

e) 24

f) 27
g) 1800°
h) 84°
6. a) 4
b) 3
c) 6
d) 8
e) 10
f) 12
7. $40^{\circ}, 45^{\circ}, 60^{\circ}$
8. 60°
9. 108°
10. parallel
11. perpendicular
12. 24
$\begin{array}{ll}\text { 13. a) } 36^{\circ} & \text { b) } 60^{\circ}\end{array}$
14. 180°
15. $\frac{n(n-3)}{2}$
f) $(y-2) 180^{\circ}$
f) $\frac{(y-2)}{y} 180^{\circ}$

