E

С

F

2.2 Exercise Set

1. Given: $c \parallel d$

 $\angle 1 = \angle 3$ Prove: a || b

2. Given: $\angle 1 = \angle 2$ $\angle 1 = \angle 3$ Prove: BC || EF B A D B A 1 23

	Statement	Reason
1.	c d	
2.		given
3.	$\angle 3 = \angle 4$	
4.	$\angle 1 = \angle 4$	
5.	a b	alternate interior $\angle s$

	Statement	Reason
1.	$\angle 1 = \angle 2$	
2.	$\angle 1 = \angle 3$	
3.	$\angle 2 = \angle 3$	
4.		

3. Given: $\angle ACD = \angle CDF$ $\angle 1 = \angle 4$ Prove: BC || DE B

4. Given: BE bisects $\angle ABC$ CE bisects $\angle BCD$ $\angle 2 + \angle 3 = 90^{\circ}$

Prove: AB || CD

	Statement	Reason		Statement	Reason
1.	$\angle ACD = \angle CDF$		1.	BE bisects ∠ABC	
2.	$\angle 1 + \angle 2 = \angle 3 + \angle 4$	addition of angles	2.	$\angle 1 = \angle 2$	definition of bisect
3.	$\angle 1 = \angle 4$		3.	CE bisects ∠BCD	
4.	$\angle 1 + \angle 2 = \angle 3 + \angle 1$		4.		
5.	$\angle 2 = \angle 3$		5.	$\angle 2 + \angle 3 = 90^{\circ}$	
6.	BC DE		6.	$\angle 2 + \angle 2 + \angle 3 + \angle 3 =$	addition
			7.	$\angle 1 + \angle 2 + \angle 3 + \angle 4 =$	
			8.		

Prove the following:

Statement	Reason	Statement	Reason
		l	

С

Statement	Reason	Statement	Reason

a.

R.

ď,

2.

-

2

-

-

2.2 Exercise Set (Reasons can vary)

1	Statement	Reason	2.	Statement	Reason
1.	$\angle 1 = \angle 3$	given	1.		given
2.			2.		given
3.		corresponding \angle	3.		both = to $\angle 1$
4.		both = to $\angle 3$	4.	BC EF	corresponding $\angle s$

3.	Statement	Reason	4.	Statement	Reason
1.		given	1.		given
2.			2.		
3.		given	3.		given
4.		substitution	4.	$\angle 3 = \angle 4$	definition of bisector
5.		subtraction	5.		given
6.		alternate interior $\angle s$	6.		
			7.		substitution
			8.		co-interior ∠s

5.	Statement	Reason	6.	Statement	Reason
1.		given	1.		given
2.	$\angle 3 = \angle 4$		2.		given
3.	$\angle 2 = \angle 6$		3.		each 90°
4.	$\angle 7 = \angle 8$		4.		vertical∠s
			5.		3rd \angle of a \triangle

For questions 7 to 24, proof methods can vary.

.

7	Statement	Reason	8.	Statement	Reason
	a b	given		BC EF	given
	$\angle 2 = \angle 3$	alternate interior $\angle s$		$\angle 2 = \angle 3$	corresponding $\angle s$
	$\angle 2 = \angle 4$	given		$\angle 1 = \angle 3$	given
	$\angle 3 = \angle 4$	both = to $\angle 2$		$\angle 1 = \angle 2$	both = to $\angle 3$
	c d	corresponding $\angle s$		AB DE	corresponding $\angle s$

Foundations of Math 11

2

9.	Statement	Reason	10.	Statement	Reason
	$\angle 2 = \angle 6$	given		$\angle 1 = \angle 3$	given
	$\angle 3 = \angle 4$	vertical $\angle s$		$\angle 4 = \angle 5$	given
	$\angle 1 = \angle 5$	3rd \angle of a \triangle		$\angle 3 = \angle 4$	vertical∠s
				$\angle 1 = \angle 5$	substitution
				AB DE	alternate interior $\angle s$

11	Statement	Reason	12	Statement	Reason
	$AB \perp BC$	given		$\angle 1 = \angle 5$	given
	$DE \perp BC$	given		AB CD	corresponding $\angle s$
	AB DE	both \perp to BC		$\angle 2 = \angle 4$	alternate interior $\angle s$
	$\angle 1 = \angle 2$	alternate interior ∠s			

13.	Statement	Reason	14.	Statement	Reason
	$\angle 3$ comp to $\angle 1$	given		$\angle 1$ supp to $\angle 4$	given
	$\angle 1 + \angle 3 = 90^{\circ}$	defn of complementary		$\angle 1 + \angle 4 = 180^{\circ}$	defn of supplementary
	$\angle 4$ comp to $\angle 2$	given		$\angle 3 + \angle 4 = 180^{\circ}$	supplementary ∠s
	$\angle 2 + \angle 4 = 90^{\circ}$	defn of complementary		$\angle 1 = \angle 3$	both = to 180°
	$\angle 1 + \angle 3 = \angle 2 + \angle 4$	both = to 90°		$\angle 1 = \angle 2$	vertical angles
	AD bisects ∠BAC	given		$\angle 2 = \angle 3$	both = to $\angle 1$
	$\angle 1 = \angle 2$	defn of bisect			
	$\angle 3 = \angle 4$	subtraction			

15.	Statement	Reason	16.	Statement	Reason
	$BC \perp CD$	given		$AC \perp BD$	given
	$\angle BCD = 90^{\circ}$	defn of \perp		$\angle 1 + \angle 2 = \angle 3 + \angle 4$	$\perp \angle s$ are =
	$\angle 1 + \angle 2 = 90^{\circ}$	$\angle BCD = \angle 1 + \angle 2$		BD bisects ∠EBF	given
	$AC \perp CE$	given		$\angle 2 = \angle 3$	defn of bisect
	$\angle ACE = 90^{\circ}$	defn of \perp		$\angle 1 = \angle 4$	subtraction
	$\angle 3 + \angle 2 = 90^{\circ}$	$\angle ACE = \angle 3 + \angle 2$			
	$\angle 1 = \angle 3$	subtraction (steps 3 and 6)			

1

)

)

)

)

)

)

ł

)

1

)

1

17.	Statement	Reason	18.	Statement	Reason
	$\angle 1 = \angle 2$	vertical ∠s		AB CD	given
	$\angle 2 = \angle 3$	given		$\angle 2 = \angle 3$	corresponding $\angle s$
	$\angle 1 = \angle 3$	both = $\angle 2$		$\angle 1 = \angle 3$	given
	CD bisects ∠BCE	defn of bisect		$\angle 1 = \angle 2$	both = $\angle 3$
				AD BC	corresponding ∠s

19.	Statement	Reason	20.	Statement	Reason
	AB CD	given		$\angle 1 = \angle 2$	given
	$\angle 1 + \angle 2 = \angle 3 + \angle 4$	alternate interior $\angle s$ $\angle A = \angle A$		$\angle A = \angle A$	same ∠
	BE bisects ∠ABC	given		/3- /4	3rd \angle s of a \triangle ABC and \triangle ADE
	$\angle 1 = \angle 2$	defn of bisect		23-24	
	CF bisects ∠BCD	given			
	$\angle 3 = \angle 4$	defn of bisect			
	$\angle 2 + \angle 2 = \angle 3 + \angle 3$	substitution			
	$\angle 2 = \angle 3$	division			

21.	Statement	Reason	22	Statement	Reason
	a b	given		$AB \perp BF$	given
	$\angle 1 = \angle 2$	corresponding $\angle s$		$FG \perp BF$	given
	$c \perp b$	given		$\mathrm{DH}\perp\mathrm{BF}$	given
	$\angle 2 = 90^{\circ}$	$\perp \angle s = 90^{\circ}$		AB DH EG	all \perp to BF
	$\angle 1 = 90^{\circ}$	$\angle 1 = \angle 2$		$\angle 1 = \angle 7$	alternate interior ∠s
	c⊥a	90° \angle s are \perp		$\angle 2 = \angle 8$	alternate interior ∠s
				$\angle 1 = \angle 2$	given
				$\angle 7 = \angle 8$	substitution

5 10 11700 1 15 3 * -3 1 -1 2 1 -AT . erry. 1 -11 1 5 6 --a -2 2 ea 2 2 2 2 2 200 -2

0

23.	Sta	tement	Reason	24	Statement	Reason	
	BC	C AD	given		BD bisects ∠ABC	given	
	$\angle 1 + \angle 2 + \angle$	∠3 + ∠4 = 180°	co-interior \angle s		$\angle 1 = \angle 2$	defn of bisect	
$\angle 1 = \angle 2$		given		$AB \perp AC$	given		
	∠3	3=∠4	given		$\angle 3 = 90^{\circ}$	defn of \perp	
	∠2 + ∠2 + .	$\angle 3 + \angle 3 = 180^{\circ}$	substitution		$\angle 1 + \angle 6 = 90^{\circ}$	sum of $\angle s$ in a Δ	
	∠2+	$\angle 3 = 90^{\circ}$	division		$DC \perp BC$	given	
	∠2 + ∠3 +	$\angle BEA = 180^{\circ}$	sum of \angle s in a \triangle		$\angle 2 + \angle 4 = 90^{\circ}$	sum of $\angle s$ in a Δ	
	90° + ∠1	BEA = 180°	substitution		$\angle 1 + \angle 6 = \angle 2 + \angle 4$	both = to 90°	
	∠BE	$A = 90^{\circ}$	subtraction		$\angle 2 + \angle 6 = \angle 2 + \angle 4$	substitution	
	BE	⊥AE	defn of \perp		$\angle 6 = \angle 4$	subtraction	
					$\angle 5 = \angle 6$	vertical angles	
					$\angle 4 = \angle 5$	both = to $\angle 6$	
						<i>v</i>	
2.3	Exercise Set						
1.	a) 3240°	b) 2700°	c) 6660°	d) 3780°	e) $(x-2)180^{\circ}$	f) $(y-2)180^{\circ}$	
2.	a) 4	b) 15	c) 10	d) 360	e) 15	f) 24	
3.	a) 90°	b) 135°	c) 152.3°	d) 158.8°	$e) \ \frac{(x-2)}{x} 180^{\circ}$	f) $\frac{(y-2)}{y}$ 180°	
4.	a) 20°	b) 32.7°	c) 15.7°	d) 17.1°	e) 12.4°	f) 8°	
5.	a) ∠1 = 72°	, ∠2 = 108°	b) 720°, 360°	c) $\angle 1 = 168$	$3^{\circ}, \angle 2 = 42^{\circ}$	d) $67\frac{1}{2}$	
	e) 24	f) 27	g) 1800°	h) 84°		-	
6.	a) 4	b) 3	c) 6	d) 8	e) 10	f) 12	
7.	40°, 45°, 60°	•					
8.	60°						
9.	108°						
10. parallel							
11. perpendicular							
12.	24						
13.	a) 36°	b) 60°					
14.	180~						
15.	15. $\frac{n(n-3)}{2}$						