Chapter 3: Trigonometry

3.8 Cosine Law Problems

Cosine Law

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

Two-Step Problem:

Example \#1

Word Problems:

Example \#1: At Science World, there is a giant pendulum on display. The line is 30 feet long, and when the pendulum swings from side to side, the horizontal distance it travels is 8 ft . Determine the angle through which the pendulum swings. Round your answer to the nearest inch.

Example \#2: Two boats leave the dock at the same time. One is going an average of $30 \mathrm{~km} / \mathrm{h}$ in the direction N30W, and the other is going an average of $24 \mathrm{~km} / \mathrm{h}$ in the direction N25E. How far apart are the boats after 1.5 hours?

Assignment:

1) The pendulum of a grandfather clock is 100 cm long. When the pendulum swings from on side to the other side, the horizontal distance it travels is 9.6 cm . Determine the angle through which the pendulum swings.
2) Determine the perimeter (total of all three sides) of triangle $S R T$, if $\angle S=60^{\circ}$, $r=15 \mathrm{~cm}, t=20 \mathrm{~cm}$
3) A parallelogram has sides that are 8 cm and 15 cm long. One of the angles in the parallelogram measures 70°. Determine the length of the shorter diagonal.
4) A clock has a minute hand that is 20 cm long and an hour hand that is 12 cm long. Determine the distance between the tips of the hands at 2:00 and 10:00
5) Two drivers leave their school at the same time and travel on straight roads that diverge by 70°. One driver travels at an average speed of $33.0 \mathrm{~km} / \mathrm{h}$. The other driver travels at an average speed of $45.0 \mathrm{~km} / \mathrm{h}$. How far apart will the other drivers be after 45 minutes?

Answers:

1) $5.5^{\circ} \quad$ 2) $53.0 \mathrm{~cm} \quad$ 3) $14.4 \mathrm{~cm} \quad$ 4) $17.4 \mathrm{~cm} \quad$ 5) 34.4 km

Practice Quiz

1) Use the Cosine Law to find the measure of angle C

2) A parallelogram has adjacent sides that are 11.0 cm and 15.0 cm long. The angle between those sides is 50°. Determine the length of the shorter diagonal to the nearest tenth of a centimeter.

Answers: 1) $54.9^{0} \quad$ 2) 11.6 cm

