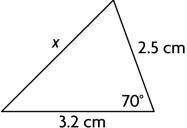
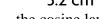

## **Unit 3 Practice Test Questions – Trigonometry**

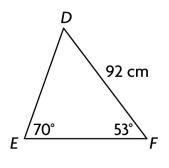

## **Multiple Choice**


Identify the choice that best completes the statement or answers the question.

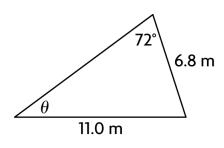
1. How you would determine the indicated angle measure, if it is possible?



- a. not possible
- b. primary trigonometric ratios
- c. the cosine law
- d. the sine law
- 2. How you would determine the indicated side length, if it is possible?

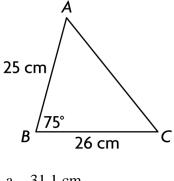






- a. the cosine law
- b. primary trigonometric ratios
- c. not possible
- d. the sine law
- 3. Solve for the unknown side length. Round your answer to one decimal place.

| $\frac{q}{\sin 30^\circ} = \frac{10.0}{\sin 80^\circ}$ |      |  |
|--------------------------------------------------------|------|--|
| a.                                                     | 5.0  |  |
| b.                                                     | 5.1  |  |
| c.                                                     | 20.3 |  |
| d.                                                     | 0.5  |  |

4. Determine the length of f to the nearest tenth of a centimetre.



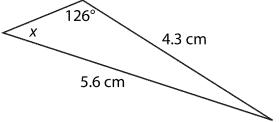

- a. 78.6 cm
- b. 79.0 cm
- c. 79.4 cm
- d. 78.2 cm
- 5. Determine the measure of  $\theta$  to the nearest degree.



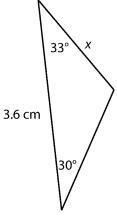
- a. 40°
- b. 38°
- c. 36°
- d. 42°
- 6. In  $\triangle DEF$ , d = 10.0 cm, e = 8.6 cm, and  $\angle E = 45^{\circ}$ . Determine the measure of  $\angle D$  to the nearest degree.
  - a. 35°
  - b. 55°
  - c. 45°
  - d. 65°
- 7. The proof of cosine law is based on which of the following
  - a. Angles in a Triangle Add to 180
  - b. Pythagorean Theorem
  - c. Slope (Rise over Run)
  - d. The Golden Ratio

8. Determine the length of *AC* to the nearest tenth of a centimetre.




- a. 31.1 cm
- b. 31.0 cm
- c. 30.1 cm
- d. 30.2 cm
- 9. Determine the measure of  $\theta$  to the nearest degree.



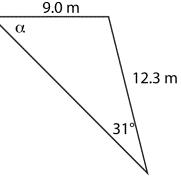

\_ 10. In Δ*DEF*, d = 13.5 cm, e = 18.2 cm, and ∠*F* = 60°. Determine the measure of *f* to the nearest tenth of a centimetre.

- a. 17.0 cm
- b. 16.4 cm
- c. 16.6 cm
- d. 16.8 cm

- 11. Which one of the following equations is valid?
  - a.  $\cos 36^\circ = -\cos 144^\circ$
  - b.  $\cos 36^{\circ} = -\cos 36^{\circ}$
  - c.  $\cos 36^{\circ} = \cos 144^{\circ}$
  - d. none of the above
- 12. Determine the unknown angle measure to the nearest degree.

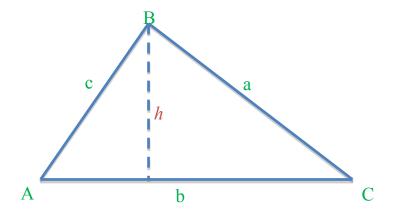


- a. 24°
- b. 54°
- c. 38°
- d. none of these
- 13. Determine the unknown side length to the nearest centimetre.



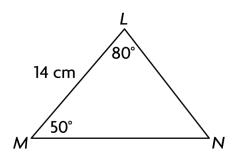

- a. 2.5 cm
- b. 1.8 cm
- c. 2.3 cm
- d. 2.0 cm
- 14. Which set of measurements will not produce a triangle?

a.  $\angle A = 35^{\circ}, a = 10.8 \text{ m}, b = 8.0 \text{ m}$ 


- b.  $\angle A = 35^{\circ}, a = 3.5 \text{ m}, b = 8.0 \text{ m}$
- c.  $\angle A = 35^{\circ}, a = 6.2 \text{ m}, b = 8.0 \text{ m}$
- d.  $\angle A = 35^{\circ}, a = 4.6 \text{ m}, b = 8.0 \text{ m}$

- 15. Which set of measurements will produce one right triangle with *b* as the hypotenuse?
  - a.  $\angle A = 60^\circ$ , a = 10.4 m, b = 12.0 m
  - b.  $\angle A = 60^{\circ}, a = 11.6 \text{ m}, b = 12.0 \text{ m}$
  - c.  $\angle A = 60^{\circ}, a = 8.7 \text{ m}, b = 12.0 \text{ m}$
  - d.  $\angle A = 60^{\circ}, a = 14.5 \text{ m}, b = 12.0 \text{ m}$
- 16. Which set of measurements can produce two possible triangles?
  - a.  $\angle A = 48^{\circ}, a = 4.2 \text{ m}, b = 5.0 \text{ m}$
  - b.  $\angle A = 48^{\circ}, a = 8.2 \text{ m}, b = 13.0 \text{ m}$
  - c.  $\angle A = 48^{\circ}, a = 5.2 \text{ m}, b = 7.0 \text{ m}$
  - d.  $\angle A = 35^{\circ}, a = 10.8 \text{ m}, b = 8.0 \text{ m}$
- 17. In  $\angle EFG$ ,  $\angle G = 32^\circ$ , f = 9.5 m, and g = 12.5 m. Which statement is true for this set of measurements?
  - a. This is not a *SSA* situation.
  - b. This is a *SSA* situation; no triangle is possible.
  - c. This is a *SSA* situation; only one triangle is possible.
  - d. This is a *SSA* situation; two triangles are possible.
  - \_ 18. Determine the indicated angle measure to the nearest degree.




- a. 45° or 135°
- b. 35° or 145°
- c. 31° or 149°
- d. No possible answer

1. Prove the Sine Law using the following triangle (2 marks)



2. In  $\triangle ABC$ ,  $\angle A = 65^{\circ}$ , a = 23.5 cm, and  $\angle C = 71^{\circ}$ . Determine the length of side *c* to the nearest tenth of a centimetre. (2 marks)

3. Solve the triangle (find all the missing sides and angles). Round angles to the nearest degree and sides to the nearest tenth of a centimetre. Show your work. (*3 marks*)



4. Write another sine ratio that is equivalent to sin 44°. (1 mark)

- 5. Determine two angles between  $0^{\circ}$  and  $180^{\circ}$  that have the sine ratio 0.8480. (1 mark)
- 6. Give a detailed explanation for **why** two different angles between 0° and 180° can have the same sine ratio and why that leads to ambiguous questions. Use pictures and words for your explanation (not a formal proof). (2 marks)

7. Determine if there are zero, one, or two possible triangles.

In  $\Delta$ JKL,  $\angle$ J = 55, j =10.4km, k =11.6km.

**8.** The pilot of an airplane in flight looks down at a point on the ground that is some distance away. The angle of depression is 28°, and the plane's altitude is 1200 meters. What is the distance from the pilot to the point on the ground?

**9.** Two boats leave the dock at the same time. One is going an average of 30 km/h in the direction N30W, and the other is going an average of 24 km/h in the direction N25E. How far apart are the boats after 1.5 hours?

10. A radio tower is supported by two wires on opposite sides. On the ground, the ends of the wire are 235 m apart. One wire makes a  $75^{\circ}$  angle with the ground. The other makes a  $55^{\circ}$  angle with the ground. Draw a diagram of the situation. Then, determine the length of each wire to the nearest metre.

## BONUS

**11.** A canoeist leaves the dock and paddles toward a buoy 140 m away. After reaching the buoy, she changes directions and paddles another 80 m. From the dock, the angle between the buoy and the canoeist's current position measures 25°. How far is the canoeist from the dock? Give two possible answers. Show your work.