Chapter 5: Statistics

5.5 - Normal Distribution on the Calculator

The Normal Probability Distribution menu for the TI-83+/84+ is found under DISTR (2nd VARS).

NOTE: A mean of zero and a standard deviation of one are considered to be the default values for a normal distribution on the calculator, if you choose not to set these values.

The Normal Distribution functions:

\#1: normalpdf $p d f=$ Probability Density Function
This function returns the probability of a single value of the random variable x. Use this to graph a normal curve. Using this function returns the y coordinates of the normal curve.

Syntax: normalpdf (x, mean, standard deviation)

\#2: normalcdf $\quad c d f=$ Cumulative Distribution Function

This function returns the cumulative probability from zero up to some input value of the random variable x. Technically, it returns the percentage of area under a continuous distribution curve from negative infinity to the x. You can, however, set the lower bound.

Syntax: normalcdf (lower bound, upper bound, mean, standard deviation)
\#3: invNorm(inv = Inverse Normal Probability Distribution Function
This function returns the x-value given the probability region to the left of the x-value.
($0 \leq$ area ≤ 1 must be true.) The inverse normal probability distribution function will find the precise value at a given percent based upon the mean and standard deviation.

Syntax: invNorm (probability, mean, standard deviation)

Example \#1: Given a normal distribution of values for which the mean is 70 and the standard deviation is 4.5 .

First, use your calculator to display the distribution graph.

Then, use your calculator to find the following values:
a) the probability that a value is between 65 and 80 , inclusive.
b) the probability that a value is greater than or equal to 75 .
c) the probability that a value is less than 62 .
d) What score would you need to get in order to be higher than 80% of the data?
e) What score would you need in order to be in the top 30% ?

Example \#2: Suppose scores on an IQ test are normally distributed. The test has a mean of 100 and a standard deviation of 10 .

First, use your calculator to display the distribution graph.

$$
\begin{aligned}
& \mathrm{X} \min = \\
& \mathrm{Xmax}= \\
& \mathrm{Ymin}= \\
& \mathrm{Ymax}=
\end{aligned}
$$

a) What is the probability that a person who takes the test will score between 90 and 110 ?
b) the probability of having a score less than 75 ?
c) the probability of having a score greater than 120 ?
d) The score you would need in order to avoid being in the bottom 25% ?
e) the score you would need to get in order to be in the top 10% ?

How to graph the area under a distribution:

ShadeNorm(

To find ShadeNorm(, go to DISTR and right arrow to DRAW. Choose \#1:ShadeNorm(.The area under the curve between particular values represents the probabilities of events occurring within that specific range.

ShadeNorm (lower bound, upperbound, mean, standard deviation)
Example \#1: The average (mean) score on a test is 63% and the standard deviation is 15 . The teacher is marking on the "bell curve".

$$
\begin{aligned}
& \mathrm{X} \min = \\
& \mathrm{Xmax}= \\
& \\
& \mathrm{Ymin}= \\
& \mathrm{Ymax}=
\end{aligned}
$$

What is the probability of getting an ' A ' (show shading on your graph):
Check answer with normalcdf(
Example \#2: The lifetime of a battery is normally distributed with a mean life of 40 hours and a standard deviation of 1.2 hours.

$\mathrm{Xmin}=$
$\mathrm{Xmax}=$
$Y \min =$
Ymax $=$

Find the probability that a randomly selected battery lasts longer than 42 hours. (show shading on your graph)

Check answer with normalcdf(

Assignment

1) Use your calculator to verify the 68/95/99.7 rule. Graph a normal distribution (mean $=0$, standard deviation $=1$)

The parameters will be (variable, mean, standard deviation).

a) Shade the graph from -1 to 1 and record the area:
b) Shade the graph from -2 to 2 and record the area:
c) Shade the graph from -3 to 3 and record the area:
2) A teacher is marking on "the curve" and wants a class average of 67% with a standard deviation of 10 . In this class, what percentage of students will receive each letter grade?

First, use your calculator to display the distribution graph.

$$
\begin{aligned}
& \mathrm{X} \min = \\
& \mathrm{X} \max = \\
& \mathrm{Ymin}= \\
& \mathrm{Ymax}=
\end{aligned}
$$

Then, use your calculator to find the following values:
a) the probability that a student will fail (less than 50%)?
b) the probability that a student will get a C- $(50 \%$ to $60 \%)$?
c) The probability that a student will get a $\mathrm{C}(60 \%$ to $67 \%)$?
d) The probability that a student will get a $\mathrm{C}+(67 \%$ to $73 \%)$?
e) The probability that a student will get a $\mathrm{B}(73 \%$ to $86 \%)$?
f) The probability that a student will get a B (86% to 100%) ?
g) What score would be required to beat 40% of the class?
h) What score would be required to be in the top 10% of the class?
3) A manufacturer of TV's wants to know how long to make a warranty. The TV's last an average of 4.75 years with a standard deviation of 0.75

First, use your calculator to display the distribution graph.

$$
\begin{aligned}
& \mathrm{X} \min = \\
& \mathrm{Xmax}= \\
& \\
& \mathrm{Ymin}= \\
& \mathrm{Ymax}=
\end{aligned}
$$

Then, use your calculator to find the following values:
a) the probability that a TV will last less than 3 years?
b) the probability that a TV will break before 5 years?
c) If he is willing to fix 5% of the TV's under warranty, then how many years should he make the warranty for?
d) After how many years can he be confident that 90% of the TV's are no longer being used?
4) A game of chance has an average score of 50 with a standard deviation of 20. Anytime you score over 60, you get your money back. If you get a score of 100 , then you win the jackpot (10 times whatever you put in).

First, use your calculator to display the distribution graph.

$\mathrm{Xmin}=$ $\mathrm{Xmax}=$
$Y \min =$
Ymax $=$

Then, use your calculator to find the following values:
a) the probability that you will score over 60 ?
b) the probability that you will score less than 60 ?
d) the probability that you will score between 50 and 60 ?
c) the probability of winning the jackpot?

