## Unit 5: Statistics

### 5.5 Z-Scores

Instead of changing the scale on your graph for every question, you can keep the same by just using the normal distribution with a mean of 0 and standard deviation of 1 , and then talking about " z -scores" instead of real numbers.

If I am 1.5 standard deviations above the mean, then my $z$-score is $\qquad$
If I am 0.6 standard deviations below the mean, then my z-score is $\qquad$

## Formula:

$Z=\frac{x-\mu}{\sigma}$
Example: If the driving learners' test has an average of $80 \%$ with a standard deviation of $5 \%$, and you got $72 \% \ldots$ what is your $z$-score?

Example: If the average weight of a 16 year old male is 170 lbs . with a standard deviation of 12 and you weigh $190 \mathrm{lbs} . .$. what is your $z$-score?

Z-Scores are used to find probabilities under the bell curve (same as we did on the calculator). Instead of using the calculator, we use a statistics chart. (back of the textbook)

Example: What is the probability of getting a z-score of...
Less than $1.61 ?$

Less than -0.55 ?

Example: An IQ test has a mean of 100 with a standard deviation of 15 . What is the probability of getting less than 80 on the test?

Example: An IQ test has a mean of 100 with a standard deviation of 15 . What score would have to get in order to be in the top $10 \%$ ?

## Assignment

1) Determine the z-score for each example:

a) $\mu=112, \sigma=15.5, x=174$
b) $\mu=53.46, \sigma=8.24, x=47.28$
c) $\mu=82, \sigma=12.5, x=58$
d) $\mu=245, \sigma=22.4, x=300$
2) Using a $z$-score table, determine the percent of the data to the left of each $z$-score.
a) $\mathrm{z}=1.24$
b) $z=-2.35$
c) $z=2.17$
d) $z=-0.64$
3) Determine the percent of data between each pair of $z$-scores
a) $\mathrm{z}=-2.88$ to $\mathrm{z}=-1.47$
b) $\mathrm{z}=-0.85$ to $\mathrm{z}=1.64$
4) What z -score is required for each situation?
a) $10 \%$ of the data is to the left of the $z$-score
b) $10 \%$ of the data is to the right of the $z$-score
c) $60 \%$ of the data is below the $z$-score
d) $60 \%$ of the data is above the $z$-score
5) Meg wonders if she should consider a career in the sciences, because she does well in mathematics. However, she also does well in English and has thought about becoming a journalist.

| Subject | Standard Test Results |  | Meg's |
| :--- | :---: | :--- | :--- |
|  | $\mu$ | $\sigma$ | Mark (\%) |
| English | 77 | 6.8 | 93 |
| Math | 74 | 5.4 | 91 |

a) Determine the z -score of Meg's marks
b) Which subject is Meg better in, relative to her peers?
c) What other factors should Meg consider?
6) A manufacturer of plasma televisions has determines that the televisions require servicing after a mean of 67 months, with a standard deviation of 7.2 months. What length of warranty should be offered, if the manufacturer wants to repair less than $1 \%$ of the televisions under the warranty?
7) a) A club accepts members only if they have an IQ score that is greater than the scores for $98 \%$ of the population. What IQ score would you need to be accepted into this club? ( $\mu=100$ and $\sigma=15$ )
b) Only $0.38 \%$ of the population are considered to be geniuses, as measured by IQ score. What is the minium IQ score that is required to be considered a genius?
c) Jarrod was told that his IQ score is in the top $30 \%$ of the population. What is his IQ score?

## Answer Key

1) a) 4
b) -0.75 c) -1.92
d) $2.455 \ldots$
2) a) $89.25 \% \quad$ b) $0.94 \%$
c) $98.50 \%$
d) $26.11 \%$
3) a) $6.88 \% \quad$ b) $75.18 \%$
4) a) -1.28
b) 1.28
c) 0.25
d) -0.25
5) a) English: 2.352... Math: 3.148...
b) Math
c) eg. The job market, her preferences, whether absolute or relative marks are more important for university applications, etc.
6) 50 months, or round down to 4 years
7) a) 131
b) 140
c) at least 108
