	Name:	
Lesson 6.1 – Linear Equat	ion Review	
<u>Vocabulary</u>		
Equation: a math sentence that	contains	
Linear: makes a straight line (n	0	
Variables:	_ quantities represented by	(often <i>x</i> and <i>y</i>)
Function: equations can someti	imes be written as functions as well	(using
x-axis: is a	esent an equation with two variable number line, with positive value	
negative to the left y-axis: is a going down	number line, with positive values	s going up and negative
Origin: the of th	e graph is called "the origin"	
Quadrants: A graph has four quas follows	adrants, usually labeled with	

Assignment:

A. Matching

2x + 3
f(x) = 2x + 3
y = 2x + 3
4x - 2y = 0
f(x) = 2x
4x - 2y

B. Is it linear? Yes or No

y = 2x + 3	$y = x^{0.5} + 3$
$y = 2x^2 + 3$	a = 2b + 3
$y = \frac{1}{2}x + 3$	$y = 2x + \sqrt{3}$
2	$y = \sqrt{2x} + 3$
$y = 2x^{\frac{1}{2}} + 3$	$y = 2^{x} + 3$
y = 0.5x + 0.3	$y = x^0 + 3$

C. Cartesian Coordinates - Label each coordinate on the graph:

(7,4), (-5,3), (-4,-8), (6,-2), (0,9), (-1,0)

Vocabulary

x-intercept: where the line crosses the

y-intercept: where the line crosses the

Example of a linear equation graph:

Notice the arrows indicate that the lines continue forever (to infinity?)

y-intercept = _____

x-intercept = _____

The graph goes through quadrants ______ but not quadrant _____

Does the graph go through the point (4,1)?

Does the graph go through the point (2,-3)?

Does the point (-4,7) satisfy the linear equation?

Assignment:

Substitution:

An algebra technique

Example:

Equation: y + 2x = 3 If x=1, then what is y?

Equation: y + 2x = 3 If y=0, then what is x?

Assignment:

1) Equation: 2x + y = -4 If *y*=0, then what is *x*?

2) Equation: $3x - \frac{1}{2}y = 9$ If *y*=0, then what is *x*?

3) Equation: 3x + 2y = 6 If x=0, then what is y?

4) Equation: 3x + 2y = 5 If *x*=0, then what is *y*?

5) Equation: y = 2x + 3 If y=0, then what is x?

Graphing Method #1 – Using intercepts

STEP #1: Find the ______ and plot these points.

To find the *y-intercept*, set

To find the *x-intercept*, set

STEP #2: Find a third point by picking a random x-value and find the corresponding y-value by substitution

STEP #3: Plot these three points and sketch the straight line through these points.

Note: If the three points do not make a straight line then a mistake was made.

Example

a)
$$3x + 2y = 6$$

b) 5x + 2y - 15 = 0

Assignment:

Graph each equation using the intercept method. Show your work.

1) 2x - y = 6

2) 2x + 3y = 6

3) 2x + y = -4

Practice Quiz:

1) Is it a linear equation?

a)
$$x + 2y = 2$$

b) $0.5x + 2.1y = (\sqrt{3})^2$
c) $y = 2x^2 + 1$

2) Analyze the linear graph

3) Equation: $\frac{1}{2}x + y = -4$ If *y*=0, then what is *x*?

4) Graph the following equation using the intercept method. Show your work.

$$x + 2y = 2$$

Name: __

Lesson 6.1 – Linear Equation Review (teacher)

<u>Vocabulary</u>

Equation: a math sentence that contains an equals sign

Linear: makes a straight line (no exponents on variables)

Variables: unknown quantities represented by letters (often *x* and *y*)

Function: equations can sometimes be written as functions as well (using f(x) instead of y) all linear equations can be functions except for a vertical line.

Cartesian Coordinates: to represent an equation with two variables with points (*x*,*y*) on a graph.

x-axis: is a horizontal number line, with positive values to the right and negative to the left

y-axis: is a vertical number line, with positive values going up and negative going down

Origin: the centre of the graph is called "the origin" (0,0)

Quadrants: A graph has four quadrants, usually labeled with Roman numerals, as follows

<u>Vocabulary</u>

x-intercept: where the line crosses the x-axis (or where *y*=0)

y-intercept: where the line crosses the y-axis (or where *x*=0)

Example of a linear equation graph:

Notice the arrows indicate that the lines continue forever (to infinity?)

y-intercept = ____

x-intercept = _____

The graph goes through quadrants ______ but not quadrant _____

Does the graph go through the point (4,1)?

Does the graph go through the point (2,-3)?

Does the point (-4,7) satisfy the linear equation?

Graphing Method #1 – Using intercepts

STEP #1: Find the x and y-intercepts and plot these points.

To find the *y*-intercept, set x = 0 then solve for y. To find the *x*-intercept, set y = 0 then solve for x.

STEP #2: Find a third point by picking a random x-value and find the corresponding y-value by subbing into the function.

STEP #3: Plot these three points and sketch the straight line through these points.

Note: If the three points do not make a straight line then a mistake was made.

