Name:

\qquad

Lesson 6.1 - Linear Equation Review

Vocabulary

Equation: a math sentence that contains
Linear: makes a straight line (no
Variables: \qquad quantities represented by \qquad (often x and y)

Function: equations can sometimes be written as functions as well (using \qquad

Cartesian Coordinates: to represent an equation with two variables with points (x, y) on a
\qquad _.
\mathbf{x}-axis: is a \qquad number line, with positive values to the right and negative to the left
\mathbf{y}-axis: is a \qquad number line, with positive values going up and negative going down

Origin: the \qquad of the graph is called "the origin"

Quadrants: A graph has four quadrants, usually labeled with \qquad , as follows

Assignment:

A. Matching

Equation	$2 x+3$
Expression	$f(x)=2 x+3$
Function	$y=2 x+3$
Equation	$4 x-2 y=0$
Expression	$f(x)=2 x$
Function	$4 x-2 y$

B. Is it linear? Yes or No

$$
\begin{array}{ll}
y=2 x+3 & y=x^{0.5}+3 \\
y=2 x^{2}+3 & a=2 b+3 \\
y=\frac{1}{2} x+3 & y=2 x+\sqrt{3} \\
y=2 x^{\frac{1}{2}}+3 & y=\sqrt{2 x}+3 \\
y=0.5 x+0.3 & y=2^{x}+3 \\
y=x^{0}+3
\end{array}
$$

C. Cartesian Coordinates - Label each coordinate on the graph:
$(7,4),(-5,3),(-4,-8),(6,-2),(0,9),(-1,0)$

Vocabulary

x-intercept: where the line crosses the y-intercept: where the line crosses the

Example of a linear equation graph:

Notice the arrows indicate that the lines continue forever (to infinity?)
y-intercept $=$ \qquad
x-intercept $=$ \qquad
The graph goes through quadrants \qquad but not quadrant \qquad
Does the graph go through the point $(4,1)$?
Does the graph go through the point $(2,-3)$?
Does the point $(-4,7)$ satisfy the linear equation?

Assignment:

	${ }_{5}$	7			$+3=2 x$ 4	$\rightarrow x$	y-intercept $=$ \qquad x-intercept $=$ \qquad Quadrants: \qquad Do the points satisfy equation? $(-3,0) ?$ $(2,2)$? $(-1,-4)$?
							y-intercept $=$ \qquad x-intercept $=$ \qquad Quadrants: \qquad Do the points satisfy equation? $(-1,1)$? $(2,3)$? $(-4,0)$?
		4			34	$\begin{array}{l\|l} & x \\ \hline 5 & 6 \\ \hline \end{array}$	y-intercept $=$ \qquad x-intercept $=$ \qquad Quadrants: \qquad Do the points satisfy equation? $(5,1)$? $(-2,-1)$? $(2,7)$?

Substitution:

An algebra technique

Example:

Equation: $y+2 x=3$ If $x=1$, then what is y ?

Equation: $y+2 x=3$ If $y=0$, then what is x ?

Assignment:

1) Equation: $2 x+y=-4 \quad$ If $y=0$, then what is x ?
2) Equation: $3 x-\frac{1}{2} y=9 \quad$ If $y=0$, then what is x ?
3) Equation: $3 x+2 y=6 \quad$ If $x=0$, then what is y ?
4) Equation: $3 x+2 y=5$ If $x=0$, then what is y ?
5) Equation: $y=2 x+3 \quad$ If $y=0$, then what is x ?

Graphing Method \#1 - Using intercepts
STEP \#1: Find the \qquad and plot these points.

To find the \boldsymbol{y}-intercept, set
To find the \boldsymbol{x}-intercept, set
STEP \#2: Find a third point by picking a random x -value and find the corresponding y-value by substitution

STEP \#3: Plot these three points and sketch the straight line through these points.

Note: If the three points do not make a straight line then a mistake was made.

Example
a) $3 x+2 y=6$

b) $5 x+2 y-15=0$

Assignment:

Graph each equation using the intercept method. Show your work.

1) $2 x-y=6$

2) $2 x+3 y=6$

3) $2 x+y=-4$

4) $y=-2 x-1$

Practice Quiz:

1) Is it a linear equation?
a) $x+2 y=2$
b) $0.5 x+2.1 y=(\sqrt{3})^{2}$
c) $y=2 x^{2}+1$
2) Analyze the linear graph

3) Equation: $\frac{1}{2} x+y=-4 \quad$ If $y=0$, then what is x ?
4) Graph the following equation using the intercept method. Show your work.
$x+2 y=2$

Name:

\qquad

Lesson 6.1 - Linear Equation Review (teacher)

Vocabulary

Equation: a math sentence that contains an equals sign
Linear: makes a straight line (no exponents on variables)
Variables: unknown quantities represented by letters (often x and y)
Function: equations can sometimes be written as functions as well (using $f(x)$ instead of y) all linear equations can be functions except for a vertical line.

Cartesian Coordinates: to represent an equation with two variables with points (x, y) on a graph.
\mathbf{x}-axis: is a horizontal number line, with positive values to the right and negative to the left \mathbf{y}-axis: is a vertical number line, with positive values going up and negative going down

Origin: the centre of the graph is called "the origin" $(0,0)$
Quadrants: A graph has four quadrants, usually labeled with Roman numerals, as follows

Vocabulary

x-intercept: where the line crosses the x-axis (or where $y=0$)
\mathbf{y}-intercept: where the line crosses the y -axis (or where $\mathrm{x}=0$)

Example of a linear equation graph:

Notice the arrows indicate that the lines continue forever (to infinity?)
y-intercept $=$ \qquad
x-intercept $=$ \qquad
The graph goes through quadrants \qquad but not quadrant \qquad
Does the graph go through the point $(4,1)$?
Does the graph go through the point $(2,-3)$?
Does the point $(-4,7)$ satisfy the linear equation?

Graphing Method \#1 - Using intercepts
STEP \#1: Find the x and y -intercepts and plot these points.
To find the \boldsymbol{y}-intercept, set $\mathrm{x}=0$ then solve for y .
To find the \boldsymbol{x}-intercept, set $\mathrm{y}=0$ then solve for x .
STEP \#2: Find a third point by picking a random x -value and find the corresponding y -value by subbing into the function.

STEP \#3: Plot these three points and sketch the straight line through these points.

Note: If the three points do not make a straight line then a mistake was made.

