Name:

Notes 7.4 Solving Quadratics

Solving $=$
Solution $=$

Example \#1: Find the zeros for the equation $y=x^{2}-x-6$ by graphing
\square

Assignment Part 1:

1) look at the graph and find the roots:

2) Graph on your calculator and find the zeros
a) $2 x^{2}-5 x-3=0$
b) $9 x-4 x^{2}=0$

Example \#2: Find the zeros for the equation $x^{2}+2 x=8$ by graphing

Method \#1

Method \#2

\square

Assignment Part 2:

a) $x^{2}+5 x=24 \quad$ Method \#1	$x^{2}+5 x=24 \quad$ Method \#2
b) 0.5 $x^{2}=-2 x+3 \quad$ Method \#1	$0.5 x^{2}=-2 x+3 \quad$ Method \#2

c) $6 a^{2}=11 a+35 \quad$ Method \#1	$6 a^{2}=11 a+35 \quad$ Method \#2	
d) $2 p^{2}+3 p=1-2 p \quad$ Method \#1	$2 p^{2}+3 p=1-2 p \quad$ Method \#2	

Example \#3: Solve by graphing: $3 x^{2}+4 x-2=2 x^{2}-2 x-7$

Method \#1

Method \#2

Assignment Part 3:

a) $5 x^{2}-2 x=4 x+3 \quad$ Method \#1	$5 x^{2}-2 x=4 x+3 \quad$ Method \#2
b) $-2 x^{2}+x-1=x^{2}-3 x-7 \quad$ M \#1	$-2 x^{2}+x-1=x^{2}-3 x-7 \quad$ M \#2
c) $3 x^{2}-12 x+17=-4(x-2)^{2}+5$	$3 x^{2}-12 x+17=-4(x-2)^{2}+5$
d) $5 x^{2}+4 x+3=-x^{2}-2 x$	$5 x^{2}+4 x+3=-x^{2}-2 x$

Example \#3: Bonnie launches a model rocket from the ground with an initial velocity of $68 \mathrm{~m} / \mathrm{s}$. The following function, $h(t)$, can be used to model the height of the rocket, in metres, over time, t, in seconds:

$$
h(t)=-4.9 t^{2}+68 t
$$

Bonnie's friend Sasha is watching from a lookout point at a safe distance.
Sasha's eye level is 72 m above the ground.
At what time during the flight will the rocket be at Sasha's eye level?

Method \#1

Method \#2

Assignment Part 4:

1) A ball is thrown into the air from a bridge that is 14 m above a river. The function that models the height, $h(t)$, in metres of the ball over time, t, in seconds is:

$$
h(t)=-4.9 t^{2}+8 t+14
$$

Choose your method. Show your work
\square
a) When is the ball 16 m above the water?
b) When in the ball 12 m above the water?
c) Is the ball ever 18 m above the water? Explain how you know.
d) When does the ball hit the water?
2) The stopping distance, d, of a car, in metres, depends on the speed of the car, s, in kilometres per hour. For a certain car on a dry road, the equation for stopping distance is:

$$
d=0.0059 s^{2}+0.187 s
$$

The driver of the car slammed on his brakes to avoid an accident, creating skid marks that were 120 m long. He told the police that he was driving at the speed limit of $100 \mathrm{~km} / \mathrm{h}$. Do you think he was speeding? Explain.

Choose your method. Show your work
\square

More Practice

Solve for ' x ' using either method.

1) $0.5 z^{2}+3 z-2=0$	2) $0.09 x^{2}+0.30 x+0.25=0$
3) $5 p=3-2 p^{2}$	4) $x^{2}-3 x-8=-2 x^{2}+8 x+1$

Answer Key

Part 1:

1) a) $x=-2,5$
b) $x=-3$
2) a) $x=-0.5,3$
b) $x=0,2.25$

Part 2:

a) $x=-8,3$
b) $x=-5.2,1.2$
c) $x=-1.7,3.5$
d) $p=-2.7,0.2$

Part 3:

a) $x=-0.38,1.58$
b) $x=-0.9,2.2$
c) $x=2$
d) no solution

Part 4:

1) a) $t=0.31 \mathrm{~s}$ and $t=1.32 \mathrm{~s}$
b) $t=1.85 \mathrm{~s}$
c) No; the maximum height is less than 18 .
d) $t=2.69 \mathrm{~s}$
2) Yes, solving $120=0.0059 s^{2}+0.187 s$ indicates that the driver was travelling 127.65 km / h.

Extra Practice

1) $x=-6.6,0.6$
2) $x=-1.7$
3) $p=-3,0.5$
4) $x=-0.7,4.4$

Practice Quiz

1) Solve by graphing: $4 x^{2}-2 x-6=3 x^{2}-5 x-2$

Method \#1

Method \#2

Zeros = \qquad
\square
Intersections = \qquad

