Chapter 1 Review: Logic

Textbook p6-62
Summary: p.34,59-60
Practice Questions p.61-62
кеу Concepts: Inductive + Deductive Reasoning
Inductive = Try a bunch of examples and make a conjecture based on the pattern that you find. Or prove that something is false using a counter -example

Deductive $=$ Prove that something is true using logical steps or algebra. Be careful to avoid common errors such as division by o or circular logic
Key Example: The Number Trick
Choose a number
Double it
Add 6
Double again
Subtract 4
Divide by 4
Subtract 2

Chapter 1 Review: Logic
Practice \#1: Sally noticed a pattern when dividing the square of an odd number by 4. Determine the pattern and make a conjecture. (Inductive Reasoning)

$$
\begin{array}{ccc}
\frac{1^{2}}{4} & \frac{3^{2}}{4} \quad \frac{5^{2}}{4} \frac{7^{2}}{4} \\
0.25,2.25,6.25,12.25
\end{array}
$$

CONJECTURE: Answer always ends with .25 .
Practice \#2: Jim makes a conjecture that whenever you multiply two whole $0,1,2,3, \ldots$ numbers, the product is always greater that either of the two factors. Do you agree or disagree? (Can you find a counter-example?)
$3 \times 4=12 \vee 12$ is greater than 3 and greater than $5 \times 0=0$ COUNTEREXAMPLE 0 is not greater than 5
Practice \#3: All dogs are mammals. All mammals are vertebrates. Shaggy is a dog. What can bedectueed about Shaggy?

Shaggy must be a mammal and must be a vertebrate.

Practice \#4: Prove that the product of an even integer and an odd integer is always even.

Practice \#5: Consider the following number-trick:
Choose any number
Multiply by 4.
Add 10.
Divide by 2.
Subtract 5.
Divide by 2.
Add 3.
Use inductive reasoning to make a conjecture about the result and then prove it using deductive reasoning.

Practice \#6: According to this proof, $2=1$. Determine the error in reasoning.

$$
\begin{aligned}
\text { Let } a & =b \\
a^{2} & =a b \\
a^{2}+a^{2} & =a^{2}+a b \\
2 a^{2} & =a^{2}+a b \\
2 a^{2}-2 a b & =a^{2}-a b \\
2\left(a^{2}-a b\right) & =1\left(a^{2}-a b\right) \\
2 & =1
\end{aligned} \quad(\operatorname{since} a=b)
$$

Practice \#7: Prove that the sum of four consecutive natural numbers is always even. (Deductive Reasoning)

$$
\begin{aligned}
& n+(n+1)+(n+2)+(n+3) \\
= & 4 n+6 \\
= & 2(2 n+3) \\
& \uparrow \text { SINCE THE ANSWER ALWAYS HAS A FACTOR OF } 2,
\end{aligned}
$$

1

