Chapter 1 Review: Logic

Textbook p6-62 Summary: p.34,59-60 Practice Questions p.61-62

Key Concepts: Inductive + Deductive Reasoning

Inductive = Try a bunch of examples and make a <u>conjecture</u> based on the pattern that you find. Or prove that something is false using a <u>counter - example</u>

Deductive = Prove that something is true using logical steps or algebra. Be careful to avoid common errors such as <u>division</u> by <u>O</u> or <u>circular</u> logic.

Key Example: The Number Trick

Choose a number Double it Add 6 Double again Subtract 4 Divide by 4 Subtract 2

n = any number noose a number n puble it $2n$ dd 6 $2n+6$
ouble it 2n
id 6 anth
ouble again 2(2n+6)
4n+12
ibtract 4 $4n+8$
vide by 4 n+ 2
ibtract 2 n
ıł v

that... the answer is always the same as the original number

If I start with any number n, I have proved deductively that... the answer is always the same as the original number.

Chapter 1 Review: Logic

Practice #1: Sally noticed a pattern when dividing the square of an odd number by 4. Determine the pattern and make a conjecture. (Inductive Reasoning)

$$\frac{1^{2}}{4} = \frac{3^{2}}{4} = \frac{5^{2}}{4} = \frac{7^{2}}{4}$$
0.25, 2.25, 6.25, 12.25
CONJECTURE: Answer always ends with .25.

Practice #2: Jim makes a conjecture that whenever you multiply two whole **0**, *1*, **2**, **3**, numbers, the product is always greater that either of the two factors. Do you agree or disagree? (Can you find a counter-example?)

Practice #3: All dogs are mammals. All mammals are vertebrates. Shaggy is a dog. What can be deduced about Shaggy?

MAMMALS KERTEBRATES	Shaqqy	must be a mammal	and
(00) 5 1125	must	be a vertebrate.	

Practice #4: Prove that the product of an even integer and an odd integer is always even.

Inductive Reasoning	Deductive Reasoning
$2 \times 3 = 6$ $4 \times -1 = -4$	EVEN NUMBER = 2n ODD NUMBER = 2n+1
$-2 \times 5 = -10$	PRODUCT $2n(2n+1)$ = $4n^2 + 2n$
10 × 11 = 110 CAN'T FIND COUNTER-	= 2(2n+n) IF THE PRODUCT ALWAYS
EXAMPLE, THEREFORE CONJECTURE IS TRUE	HAS A FACTOR OF 2 THEN I HAVE PROVEN DEDUCTIVELY THAT THE CONTECTURE IS ALWAYS TRUE!

Practice #5: Consider the following number-trick:

Choose any number Multiply by 4. Add 10. Divide by 2. Subtract 5. Divide by 2. Add 3.

Use inductive reasoning to make a conjecture about the result and then prove it using deductive reasoning.

Inductive Reasoning	Deductive Reasoning
20-2	Any number = n
x4=80-8	×4 42
+10=18 10 2	+10 4n+10
72 = 9 5 1	+2 2n+5
-5=40-4	-5 2n
÷2=20-2	$\frac{1}{2}$ λ
+3=531	+3 n+3 PPANE. THE MICHER
CONJECTURE : ANSWER IS	PROOF: THE ANSWER IS ALWAYS 3 MORE
ALWAYS 3 MORE THAN	THAN THE ORIGINAL
ORIGINAL NUMBER	NVMBER.

Practice #6: According to this proof, 2 = 1. Determine the error in reasoning.

Let a = b $a^{2} = ab$ $a^{2} + a^{2} = a^{2} + ab$ $2a^{2} = a^{2} + ab$ $2a^{2} - 2ab = a^{2} - ab$ $2(a^{2} - ab) = 1(a^{2} - ab)$ 2 = 1 $a^{2} - ab = 0$ (Since a = b) a = b(Since a = b) a = b(Since a = b) a = b a = b (a = b) (a = b)(a = b

Practice #7: Prove that the sum of four consecutive natural numbers is always even. (Deductive Reasoning) $\overline{1,2,3,\ldots}$

n + (n+1) + (n+2) + (n+3) = 4n + 6 = 4n + 6 = 2(2n+3) $T_{SINCE THE ANSWER ALWAYS HAS A FACTOR OF 2,}$