Chapter 2 Review: Geometry

Textbook p70-106
Summary: p.84-85,105
Practice Questions p. 106

Key Concepts:

Basic Rules

1) Angles on a line are Supplementary (add to 180°)
2) Angles within a right angle are Complimentary (add to 90°)
3) Angles at a point add to 360°
4) Vertically opposite \qquad angles are equal
5) All radii within a circle are equal
6) In an isosceles triangle equal angles are opposite equal sides

Parallel Lines

1) Corresponding Angles are Equal ($1=5,2=6,3=7,4=8$)
2) Alternate Interior Angles are Equal ($4=5,3=6$)
3) Co Interior Angles are Supplementary ($3+5=180,4+6=180$)

Angles in a Triangle

1) Angles in a Triangle Add to 180 Degrees $(1+2+3=180)$
2) The External Angle in a Triangle Equals the Sum of the Opposite Interior Angles $(4=2+3)$

Angles in a Polygon

1) The sum of the measures of the interior angles of a convex polygon with n sides can be expressed as $180^{\circ}(n-2)$.

Example: If a shape has 6 sides, then the sum of the interior angles is

$$
\begin{aligned}
& =180^{\circ}(6-2) \\
& =180^{\circ}(4) \\
& =720^{\circ}
\end{aligned}
$$

That means that if all the angles are equal (it is a regular polygon and each angle is

$$
720^{\circ} \div 6=120^{\circ}
$$

2) The sum of the measures of the convex polygon is 360°.

In a REGULAR polygon

$$
\begin{array}{r}
\frac{360^{\circ}}{5}=72^{\circ} \text { for } \\
\text { each angle }
\end{array}
$$

Key Example: Given that ABCDE is a regular pentagon, prove that $A C \| E D$
3)

$$
\begin{array}{|c|c|}
\hline \text { Statement } & \text { Reason } \\
\hline \begin{array}{c}
\angle A B C=\angle D C B \\
=108^{\circ}
\end{array} & \begin{array}{c}
\text { Interior angles of } \\
\text { regular polygon }
\end{array} \\
\hline \angle A C B=\angle C A B & \begin{array}{c}
\text { Angles of a triangle } \\
=360
\end{array} \\
\hline \angle A C D=72 & 108-36=72 \\
\hline \angle E D C=108 & \begin{array}{c}
\text { Interior angles of } \\
\text { regular polygon }
\end{array} \\
\hline \begin{array}{l}
\angle A C D+\angle E D C \\
=180
\end{array} & 108+72=180
\end{array}
$$

Note: It is important not to assume that the lines are parallel or use it as a reason early in the proof. That would be called Circular reasoning
(and be logically incorrect).

Chapter 2 Review: Geometry
Practice \#1: Find each angle and give a reason.

$$
\begin{aligned}
& \angle \mathrm{DIF}=70^{\circ} \text { vertically opposite } \\
& \angle \mathrm{DIG}=10^{\circ} \text { Supplementary } \\
& \angle \mathrm{SII}=\frac{70^{\circ}}{} \text { alternate interior } \\
& \angle \mathrm{HII}=\frac{55}{\text { Supplementary }} \div 2
\end{aligned}
$$

Practice \#2: Find each angle and give a reason.

$$
\begin{aligned}
& \angle D C A=35^{\circ} \text { angles of } \triangle=180, \div 2 \\
& \angle A D C=65^{\circ} \text { angles of } \triangle=180 \\
& \angle E D A=115^{\circ} \text { Supplementary } \\
& \angle E D B=\frac{65^{\circ}}{\text { 说 }} \frac{\text { vertically opposite }}{\text { (ar supplementary) }}
\end{aligned}
$$

Practice \#3: Find each angle and give a reason

$$
\begin{aligned}
& \angle A B D=55^{\circ} \text { radii equal, isosceles } \\
& \angle B D C=11^{\circ} \text { supplementary } \\
& \angle B C D=35^{\circ} \text { radii equal, isosceles } \\
& \angle E D C=10^{\circ} \text { supplementary } \\
& \text { Cor angles from point) }
\end{aligned}
$$

Practice \#4: Given $\angle U W X=\angle W Y Z$, prove: $T V \| W X$

Statement	Reason
$\angle G F H=73^{\circ}$	\angle sin $D=180$
$\angle G F H=\angle 1 H J$	given in picture
$F G J=73^{\circ}$	both $=73^{\circ}$
corresponding angles	
are equal.	

Practice \#6: Determine the values of a, b, and c.

$$
\begin{array}{rlr}
3 a+7 a & =180 & \\
10 a & =180 & \\
a=18 & \\
3 a=b & 2 c=b \\
3(18)=b & 2 c=54 \\
b=54 & c=27
\end{array}
$$

Practice \#7: Determine the sum of the measures of the interior angles of this polygon.

$$
\begin{aligned}
& n=8 \\
& S=180(8-2) \\
& S=1080^{\circ}
\end{aligned}
$$

Practice \#8: Each interior angle of a regular convex polygon measures 162°. How many sides does the polygon have?

$$
\begin{aligned}
& 162 n=180(n-2) \\
& 162 n=180 n-360 \\
& 360=18 n
\end{aligned}
$$

$$
\begin{aligned}
& n=\frac{360}{18} \\
& n=20
\end{aligned}
$$

Practice \#9: The interior angles of a regular convex polygon add to 2340°. How many sides does the polygon have?

$$
\begin{aligned}
& 2340=180(n-2) \\
& \frac{2340}{180}+2=n
\end{aligned}
$$

$$
n=15
$$

Practice \#10: Determine the value of a, b, c, and d.

$$
\begin{aligned}
& a=36^{\circ} \\
& b=72^{\circ} \\
& c=72^{\circ} \\
& d=36^{\circ}
\end{aligned}
$$

