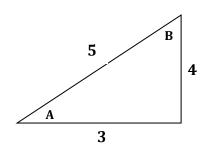
# **Chapter 3&4 Review: Trigonometry**

*Textbook p.116-154, 162-200* Summary: p.128, 153, 174, 199 Practice Questions p.154, 200

Key Concepts: Basic Trig Rations, Cosine Law, Sine Law, The Ambiguous Case

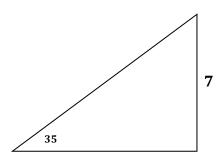
#### **Basic Trigonometry Ratios**

These ratios only apply to \_\_\_\_\_


# **SOH CAH TOA**

$$sinX = \frac{opposite}{hypotenuse}$$
  $cosX = \frac{adjecent}{hypotenuse}$   $tanX = \frac{opposite}{adjacent}$ 

$$\cos X = \frac{adjecent}{hypotenuse}$$


$$tanX = \frac{opposite}{adjacent}$$

**Example:** Find both angles using sine, cosine and tangent.



| To Find Angle A | To Find Angle B |
|-----------------|-----------------|
|                 |                 |
|                 |                 |
|                 |                 |

**Example #2:** Find the hypotenuse



### **Cosine Law**

For non-right triangles where you are given \_\_\_\_\_ or \_\_\_\_.

$$a^2 = b^2 + c^2 - 2bc \cos A$$

| Example #1   | Example #2     |
|--------------|----------------|
| SAS Question | SSS Question   |
| 40 12        | 9<br>2<br>12 X |
| Solution     | Solution       |
|              |                |

#### **Sine Law**

For non-right triangles where you are given \_\_\_\_\_ or \_\_\_\_.

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

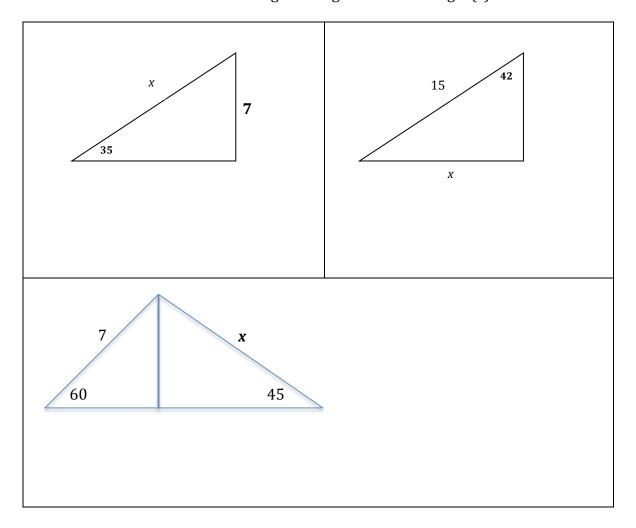
| Example #1   | Example #2   |
|--------------|--------------|
| ASA Question | AAS Question |
| 0Z<br>13 50  | 30 L         |
| Solution     | Solution     |
|              |              |
|              |              |
|              |              |
|              |              |
|              |              |

For triangles where you are given \_\_\_\_\_, there may be no solutions, one solution or two solutions.

To determine which case you have, compare the second given side to the \_\_\_\_\_ of the triangle.

**Example:** One angle is 30, the adjacent side is 6, and the next side is....

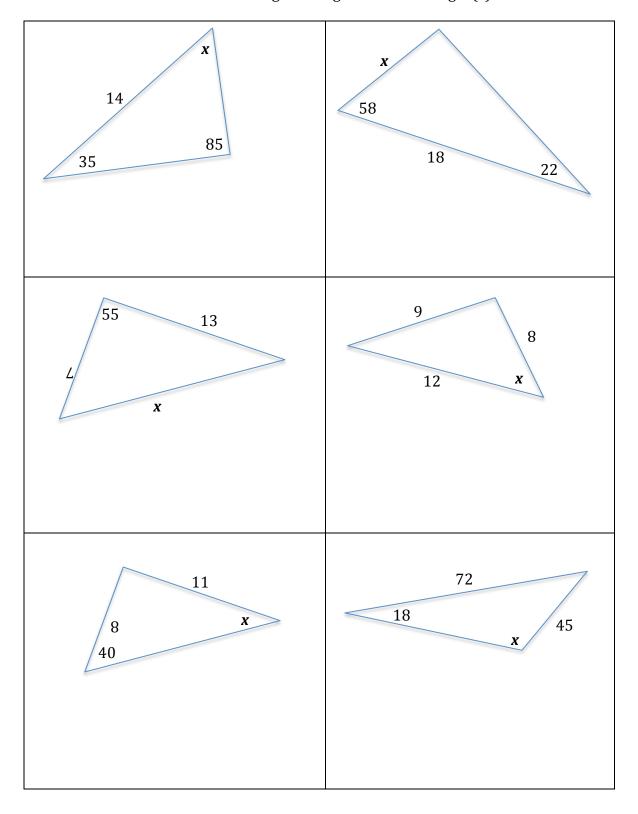
| <b>Example:</b> One angle is 30, the adjacent side is 6, and the next side is |                                     |
|-------------------------------------------------------------------------------|-------------------------------------|
| Case #1 (no solution)                                                         | Case #2 (one solution - right)      |
| 6 30                                                                          | 6 30                                |
| Case #3 (one solution - obtuse)                                               | Case #4 (two solutions - ambiguous) |
| 6                                                                             | 6                                   |


**Key Example:** A landowner says that his property is triangular, with one side 500 m long and another side 350 m long. The opposite angle to the 350 m side measures 20°. Determine the length of the third side, to the nearest metre. Show your work.

STEP #1 STEP #2

STEP #3

# **Chapter 3&4 Review: Trigonometry**


**Practice #1:** Find the unknown length or angle for each triangle (*x*).



**Practice #2:** A fireman rests his ladder against a building, making a 57° angle with the ground. The bottom of the ladder is 28 feet from the base of the building. How long is the ladder?

**Practice #3:** The pilot of an airplane in flight looks down at a point on the ground that is some distance away. The angle of depression is 28°, and the plane's altitude is 1200 meters. What is the distance from the pilot to the point on the ground?

**Practice #4**: Find the unknown length or angle for each triangle (*x*).



**Practice #5:** Solve each of the following triangles (ie. draw the triangle and label ALL of the unknown angles and lengths)

- a) In a right triangle  $\triangle PQR$ , the hypotenuse, q, is 12 m long and  $\angle P = 25^{\circ}$ . Determine the length of sides p and r to the nearest tenth of a metre.
- b) In  $\triangle ABC$ ,  $\angle A = 65^{\circ}$ , a = 23.5 cm, and  $\angle C = 71^{\circ}$ . Determine the length of side c to the nearest tenth of a centimetre.
- c) In  $\Delta XYZ$ ,  $\angle X = 50^{\circ}$ ,  $\angle Y = 80^{\circ}$ , and z = 14 cm,. Determine angle Z, to the nearest tenth of a degree.

**Practice #6:** For each description below determine if there are zero, one, or two possible triangles.

- a. In  $\triangle DEF$ , d = 5cm, e = 3cm, f = 9cm.
- b. In  $\triangle ABC$ ,  $\angle A = 25$ , b = 3m, c = 10m.
- c. In  $\Delta JKL$ ,  $\angle J = 55$ , j =10.4km, k =11.6km.
- d. In  $\Delta PQR$ ,  $\angle P$  =17,  $\angle Q$  =110, r = 26mm.
- e. In  $\Delta$ FUN,  $\angle$ F = 75, f = 25cm, n = 47cm.

**Practice #7:** Write another sine ratio that is equivalent to sin 44°.

**Practice #8:** Determine two angles between 0° and 180° that have the sine ratio 0.8480

**Practice #9:** At Science World, there is a giant pendulum on display. The line is 30 feet long, and when the pendulum swings from side to side, the horizontal distance it travels is 8 ft. Determine the angle through which the pendulum swings. Round your answer to the nearest inch.

**Practice #10:** Two boats leave the dock at the same time. One is going an average of 30 km/h in the direction N30W, and the other is going an average of 24 km/h in the direction N25E. How far apart are the boats after 1.5 hours?

**Practice #11:** A radio tower is supported by two wires on opposite sides. On the ground, the ends of the wire are 235 m apart. One wire makes a 75° angle with the ground. The other makes a 55° angle with the ground. Draw a diagram of the situation. Then, determine the length of each wire to the nearest metre.

