Chapter 5 Review: Statistics

Textbook p.210-282
Summary: p.238-239, p.278-279
Practice Questions p.240, p.280-282
Z-Score Table p. 592
Key Concepts: Central Tendency, Standard Deviation, Graphing, Normal Distribution, Z-Score, Confidence

Central Tendency

1) Mean $=$ The calculated average. Add up the numbers and divide by how many there are.
2) Median = The widdU__number (might be half way between two numbers in the list)
3) Mode $=$ The number that occurs most often
4) Standard Deviation $=$ The average distance of each number from the \qquad mean

FORMULA FOR STANDARD DEVIATION:
$\sigma=\sqrt{\frac{\text { sum of the squares of the differences from the mean }}{\text { number of values }}}$
Example: Find all measures of central tendency for the following list of numbers:
6,4,9,4,8,5
a) Mean $\frac{6+4+9+4+8+5}{6}=\frac{36}{6}=6$
b) Median $4,4,5,4,8,9 \quad \frac{5+6}{2}=5.5$
c) Mode $=4$
d) Standard Deviation

$$
\begin{aligned}
& 6 \rightarrow 6=0^{2}=0 \\
& 4 \rightarrow 6=2^{2}=4 \\
& 9 \rightarrow 6=3^{2}=9 \\
& 4 \rightarrow 6=2^{2}=4 \\
& 8 \rightarrow 6=2^{2}=4 \\
& 5 \rightarrow 6=1^{2}=\frac{1}{22}
\end{aligned}
$$

$$
6=\sqrt{\frac{22}{6}}
$$

$$
\sigma=1.915
$$

Graphing

For larger sets of data, we break it into chunks to find the measures of central tendency. We also drew graphs to represent the data:

$$
\text { Histogram }=\text { Bars }
$$

$$
\text { Frequency Polygon }=\text { Line }
$$

For large data like this, you can input the numbers into your calculator to find the measures of central tendency. Remember to use the middle number for each
category.

Step \#1: STAT Edit $\quad \bar{x}=$ average
Step \#2: STAT CALC \perp-Var Stats

Normal Distribution

$\sigma x=$ standard deviation
Med = median

Z-Scores
The z-score is the distance from a point to the mean, in terms of Standard deviations.
If I am 1.5 standard deviations above the mean, then my z-score is 1.5 If I am 0.6 standard deviations below the mean, then my z-score is -0. 6

Formula: $\quad Z=\frac{x-\mu}{\sigma}$

$$
\begin{aligned}
& x=\text { point } \\
& N=\text { mean } \\
& \sigma=\text { Standard deviation }
\end{aligned}
$$

Confidence
For interpreting a survey

1) Confidence interval = a specific interval estimate of the whole population by using information obtained from a sample. (example: between 9.5 and 10.2 million people are likely to vote for the Liberal party)
2) Margin of error = the possible difference between your estimate based on the survey and real-life. (example: 40% will vote Conservative with a margin of error of $\pm 3 \%$)
3) Confidence level = the probability that the answer in real-life matches your estimate from the survey. (example: this survey is correct 19 times out of 20)

Key Example: The average score on an normally distributed exam is 64% with a standard deviation of 7\%.
a) Label the normal curve

b) Find the percentage of people who score a C (between 60% and 73%)

$$
\begin{aligned}
& z-5 \text { coceregor for } 60 \% \\
& \frac{60-64}{7}=-0.57
\end{aligned}
$$

$$
\begin{aligned}
& \frac{160 \% \text { and } 73 \%)}{z-S_{\text {core }}} \text { for } 73 \% \\
& \frac{73-64}{7}=1.29
\end{aligned}
$$

CHART $\rightarrow 0.2843$

$$
\text { CHART } \rightarrow 0.9015
$$

$$
0.2843-6015-0.2843=0.6172 \text { or } 61.7 \%
$$

CalCulator shortcut

$$
\begin{aligned}
& \text { HCRTCuT } \\
& \text { normalcof }(60,73,64,7)=.61761 .7 \%
\end{aligned}
$$

Chapter 5 Review: Statistics

Practice \#1: Find the measures of central tendency for the marks on sample of 10
quizzes: $\quad 14,12,17,3,8,12,15,8,10,11$
a) Modes) 12,8
b) Median $3,8,8,10,11$

c) Mean $\frac{110}{10}=11$
d) Standard Deviation $3^{2}+1^{2}+6^{2}+8^{2}+3^{2}+1^{2}+4^{2}+3^{2}+1^{2}=\sqrt{\frac{146}{60}}=3.82$ Practice \#2: Students recorded their heights, in inches, when they graduated from kindergarten in 1999 and again when they graduated from high school in 2011.

1999: 3941414345464746484744384139434644
2011: 6074766264616668717674737269646360
a. Determine the mean and standard deviation for each year.

STAT
 call
 1999: $\bar{x}=43.4$
 $\sigma x=3,03$

1 -Var Stats 2011.
b. In which year are the heights most consistent?

1999 (Standard deviation is lowe:)
Practice \#3: Find the measure of central tendency for the following histogram:

Geography Test Scores
(two tallest bars)
b) Median Med $=75$
c) Mean $\bar{x}=72.6$
d) Standard Deviation
 $6 x=13$ 05

Practice \#4: Four groups of students recorded their pulse rates after a 2 km run.

Groupi	126	168	158	192	146	166	104	164	116	138
Ground	158	132	156	160	108	150	178	136	172	140
Groums	136	174	156	176	150	166	142	156	130	182
Grouph	144	150	142	152	174	176	118	152	178	164

a) Make a frequency table with five intervals to organize the pulse rates.
b) Construct a histogram of the data.

Interval	Frequency
1) $100-119$	IIII
2) $120-139$	HH+
3) $140-159$	H1+ HH+ HH
4) $160-179$	HH NH+ III
5) $180-200$	11

Practice \#5: Suppose scores on an IQ test are normally distributed. If the test has a mean of 100 and a standard deviation of 10 , what is the probability that a person who takes the test will score between 90 and 110?

Practice \#6: A machine is used to fill soda bottles. The amount of soda dispensed into each bottle varies slightly. Suppose the amount of soda dispensed into the bottles is normally distributed. If at least 99.7% of the bottles must have between 585 and 595 milliliters of soda, find the greatest standard deviation, to the nearest hundredth, that can be allowed.

Practice \#7: Determine the z-score for the given value.

$$
\mu=120, \sigma=10, x=125 \quad \frac{125-120}{10}=\frac{5}{10}=0.5
$$

Practice \#8:
Determine the percent of data to the left of the z-score: $z=-1.50$.

$C H A R T$
0.0668

Determine the percent of data to the right of the z-score: $z=2.26$.
CHART
0.9881
98.81%
Practice \#9: What is the probability of getting a z-score of...
a) Less than 1.61?
b) Less than -0.55 ?
0.9463
94.63%
$0.2912 \quad 29.12 \%$
Practice \#10: An IQ test has a mean of 100 with a standard deviation of 15 . What is the probability of getting less than 80 on the test?

$$
\begin{align*}
& Z=\frac{80-100}{15}=-1.33 \\
& \text { CHART }=0.0918 \text { on } 9.18 \% \tag{or}
\end{align*}
$$

Practice \#11: Yumi always waits until her gas tank is nearly empty before refuelling. She keeps track of the distance she drives on each tank of gas. The distance varies depending on the weather and the amount she drives on the highway. The distance has a mean of 520 km and a standard deviation of 14 km . What percent of the time does Yum drive between 508 km and 538 km on a tank of gas?

Z-Score
z-Score

$$
\frac{508-520}{14}-.857
$$

$$
\frac{538-520}{14}=1.28
$$

CHART 1949

$$
\begin{array}{r}
9015 \\
.90
\end{array}
$$

$$
.9015-1949=.7066
$$

Practice \#13: A poll was conducted to ask voters the following question: If an election were held today, whom would you vote for? The results indicated that 53% would vote for Smith and 47% would vote for Jones. The results were stated as being accurate within 3.8 percentage points, 19 times out of 20.
a) What is the confidence interval (percentage)?

$$
\begin{aligned}
& \text { Smith: } 49.2-56.8 \\
& \text { Jones: } 43.2-50.8
\end{aligned}
$$

b) If the number of people likely to vote is 300000 , how many people will vote for Smith, and how many will vote for Jones?

$$
\text { Smith: } 147600-170400
$$

$$
\text { Jones: } 124600-152400
$$

c) What is the confidence level?

$$
\frac{19}{20} \text { or } 95 \%
$$

d) If the polling company conducted this same survey using the same sample size, but used a confidence level of 99%, what would happen to the margin of error?
e) Who will win the election?
probably Smith, but not certain
(10)

