Chapter 7 Review: Quadratics

Textbook p.358-444
Summary: p.396-397, p.441-442
Practice Questions p.398,p.443-444
Key Concepts: Quadratic Analysis, Different Forms of Quadratics, Solving Quadratics, Factoring, Quadratic Formula, Modeling with Quadratics.

Definition: A quadratic is any equation with an x^{2} in it. (and no $x^{3+}, x^{-n}, \frac{1}{x}, \sqrt{x}, n^{x}$). The graph of a quadratic equation is in the shape of a para $b_{0} l a$.

Quadratic Analysis

1) The vertex is where the parabola changes direction (either a maximum or a minimum)
2) The Axis of symmetry \qquad for a parabola is a vertical line that goes through the vertex (about which the graph is symmetrical)
3) The domain for all quadratics (that aren't restricted in some way by a word problem) is all real numbers
4) The range for a quadratic is always \qquad by either the maximum or minimum point.
5) Intercepts occur when the graph crosses the x or y axis.
6) The x-intercepts always correspond to the factors of the equation, and are also called \qquad -roots , or zeros.

Different Forms of the quadratic

Vertex Form $y=a(x-p)^{2}+\boldsymbol{q}$	Factored Form \boldsymbol{y} $\boldsymbol{a}(\boldsymbol{x}+2)(\boldsymbol{x}-1)$		Standard Form $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$

You should also be able to find points on a quadratic graph using your calculator. Input the equation in $Y=$, and use the CALC menu.

Solving Quadratics
Solving $=$ finding solutions/roots/zeros/x-intercepts (all the same thing)
Example: Solve $x^{2}=x+6$

Quadratic Modeling
Many real-life problems can be modeled using quadratic equations. This involves using information from a question to write a quadratic.

Example \#1: A parabola has a y-intercept of -4 and a vertex at (3,-7). Write the equation for this quadratic

$$
\begin{aligned}
& y=a(x-p)^{2}+q \\
& -4=a(0-3)^{2} 77 \\
& 3=a(-3)^{2} \\
& 3=9 a \rightarrow a=1 / 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { vertex }=\left(\begin{array}{c}
3 \\
1 \\
2
\end{array}-7\right) \text { point } \\
& y=1 / 3(x-3)^{2}-7
\end{aligned}
$$

Example \#2: A parabola has x-intercepts of -3 and 5 and goes through the point $(2,15)$. Write the equation for this quadratic

$$
\begin{aligned}
& y=a(x+3)(x-5) \\
& 15=a(2+3)(2-5) \\
& 15=a(5)(-3) \\
& 15=-15 a \\
& a=-1
\end{aligned}
$$

Chapter 7 Review: Quadratics

Practice \#1: Graph the equation $y=\frac{1}{2}(x-3)^{2}-4$ without a calculator.

Practice \#2: Graph the equation $y=-2(x-3)(x+1)$ without a calculator.

$$
\begin{aligned}
& x \text {-ins }=3,-1 \\
& a=-2 \\
& \max \text { or } \min ? ~ M A X
\end{aligned}
$$

$$
\frac{3+-1}{2}=\text { Axis of Symmetry? } x=1
$$

$$
-1,-3,5
$$

$$
-2,-6,-10
$$

\mathbf{x}	\mathbf{y}	
1	8	$-2(1-3)(1+1)$
2	6	
3	0	
0	6	
-1	0	

$$
\begin{aligned}
& \mathrm{p}=3 \mathrm{a}=-4 \mathrm{a}=1 / 2 \\
& \text { vertex }=(3,-4) \\
& \max \text { or } \min ? \mathrm{M} / \mathrm{N} \\
& \begin{array}{l|l}
\mathbf{x} & \mathbf{y} \\
\hline 3 & -4 \\
4 & -3.5 \\
5 & -2 \\
6 & -5 \\
2 & -3.5 \\
1 & -2 \\
0 & -5
\end{array}
\end{aligned}
$$

Practice \#3: Graph the equation $y=-\frac{1}{2} x(x-4)$ without a calculator. x-hints $=0,4$
$a=-1 / 2$
max or min? MAX
$\frac{0+4}{2} \quad$ Axis of Symmetry? 2
$1,3,5$
$51,5,2.5$
Domain: all reals
Range: $y \leq 2$

Practice \#4: Analyze the graph and write an equation to match:

Vertex: $(1,-4)$
Axis of Symmetry: $X=1$
Y-Intercept: - 3
X-Intercepts: - 1, 3
Domain: all reals
Range: $y \geq-4$
Pattern: 1,3,5,
Equation: $y=(x+1)(x-3)$ or
$y=(x-1)^{2}-4$

Practice \#5: Solve by graphing: $3 x^{2}+4 x-2=2 x^{2}-2 x-7$
Method \#1 - Zeros

$$
\begin{aligned}
& 3 x^{2}+4 x-2=2 x^{2}-2 x-7 \\
& x^{2}+6 x+5=0
\end{aligned}
$$

Method \#2 - Intersections

$$
\begin{aligned}
& y_{1}=3 x^{2}+4 x-2 \\
& y_{2}=2 x^{2}-2 x-7
\end{aligned}
$$

Practice \#6: Solve by factoring

Practice \#7: Use the quadratic formula to solve. Show all answers in EXACT form and SIMPLIFY if possible

Quadratic Formula: $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{aligned}
& \text { a) } x^{2}+5 x-3=0 \\
& x=\frac{-5 \pm \sqrt{25-4(1)(-3)}}{2(1)} \\
& x=\frac{-5 \pm \sqrt{37}}{2}
\end{aligned}
$$

c) $x^{2}=x+6$

$$
\begin{aligned}
& x^{2}-x-6=0 \\
& x=\frac{1 \pm \sqrt{1^{2}-4(1)(-6)}}{2(1)} \\
& x=\frac{1 \pm \sqrt{25}}{2}=\frac{6}{2} \text { or } \frac{-4}{2} \\
& =3 \text { or }-2
\end{aligned}
$$

b) $x^{2}-5 x=2$

$$
\begin{aligned}
& x^{2}-5 x-2=0 \\
& x=\frac{5 \pm \sqrt{25-4(1)(-2)}}{2(1)} \\
& x=\frac{5 \pm \sqrt{33}}{2}
\end{aligned}
$$

d) $x^{2}+4 x+4=0$

$$
x=\frac{-4 \pm \sqrt{16-4(1)(4)}}{2(1)}
$$

$$
x=\frac{-4 \pm \sqrt{0}}{2}
$$

$$
x=-2
$$

Practice \#8: Write an equation for a parabola that has x-intercepts of -4 and 6 with a y-intercept of 50 .

$$
\begin{aligned}
& y=a(x+4)(x-6) \\
& 50=a(0+4)(0-6) \\
& 50=a(-24) \\
& a=25 / 12
\end{aligned} \quad y=25 / 12(x+4)(x-6)
$$

Practice \#9: Write a quadratic equation in factored form for this parabola:

Practice \#10: David dives from a spring board. His height, h metres, above the water t seconds after release is given by $h=-4.9 t^{2}+8.8 t+5$
a) What is the domain and range for this word problem?

$$
t \geq 0, h \geq 0
$$

b) How high is the diving board?

$$
5 m \text { (y-intercept) }
$$

c) What is David maximum height?

$$
8,95 \mathrm{~m}
$$

d) How long is David in the air for?

$$
2.85
$$

Practice \#11: Bonnie launches a model rocket from the ground with an initial velocity of $68 \mathrm{~m} / \mathrm{s}$. The following function, $h(t)$, can be used to model the height of the rocket, in metres, over time, t, in seconds:

$$
h(t)=-4.9 t^{2}+68 t
$$

Bonnie's friend Sasha is watching from a lookout point at a safe distance. Sasha's eye level is 72 m above the ground. At what time during the flight will the rocket be at Sasha's eye level?

$$
\begin{aligned}
& y_{1}=-4.9 t^{2}+68 t \\
& y_{2}=72
\end{aligned}
$$

Practice \#11: A store rents an average of 750 video games each month at the current rate of $\$ 4.50$. The owners of the store want to raise the rental rate to increase the revenue to $\$ 6000$ per month. However, for every $\$ 1$ increase, they know that they will rent 30 fewer games each month because some people won't be willing to pay higher prices. What rate should they set for video game rentals?

$$
k=(750-30 x)(4.50+x)
$$

Practice \#12: Johnny kicks a rugby ball in the air and it lands after 4 seconds. After 1 second the ball was 20 feet high. Write an equation to model the time vs. height of the ball.

$$
\begin{aligned}
& y=a \times(x-4) \quad y=\frac{20}{-3} \times(x-4) \\
& 20=a(1)(1-4) \\
& 20=-3 a \\
& 20 /-3=a
\end{aligned}
$$

Practice \#13: Gary is competing the National Diving Championships. He does a triple-back flip off the 10 m tower. If Gary's maximum height of 10.85 m occurred just 0.42 s after jumping, then how long will it take him to hit the water?

$$
\begin{aligned}
y & =a(x-p)^{2}+q \\
y & =a(x-.42)^{2}+10.85 \\
10 & =a(0-.42)^{2}+10.85 \\
-.85 & =.1764 a \\
a & =-4.82
\end{aligned}
$$

$$
\begin{aligned}
y= & -4.8(x-.42)^{2}+10 \\
& G \text { gRAPH } \\
& \text { zero } \\
& =2.34 \text { secants }
\end{aligned}
$$

Practice \#14: The length of a rectangular garden is 4 m more than its width. Determine the dimensions of the garden if the area is $117 \mathrm{~m}^{2}$.

$$
\begin{aligned}
& A=l \times w \quad 17=(w+4) w \\
& 12
\end{aligned} \quad \begin{aligned}
& 17=117 \\
& y_{1}=1 \\
& y_{2}=(w+4)(w)
\end{aligned}
$$

$$
\begin{aligned}
& w=9 \\
& \ell=9+4=13 \\
& \text { Dimensions }=9 \times 13
\end{aligned}
$$

