Chapter 7 Review: Quadratics

Textbook p.358-444 Summary: p.396-397, p.441-442 Practice Questions p.398,p.443-444

Key Concepts: Quadratic Analysis, Different Forms of Quadratics, Solving Quadratics, Factoring, Quadratic Formula, Modeling with Quadratics.

Definition: A quadratic is any equation with an x^2 in it. (and no $x^{3+}, x^{-n}, \frac{1}{x}, \sqrt{x}, n^x$). The graph of a quadratic equation is in the shape of a <u>parabola</u>.

Quadratic Analysis

- 1) The <u>vertex</u> is where the parabola changes direction (either a **maximum** or a **minimum**)
- 2) The Axis of Symmetry for a parabola is a vertical line that goes through the vertex (about which the graph is symmetrical)
- 3) The **domain** for all quadratics (that aren't restricted in some way by a word problem) is <u>all ceal numbers</u>
- 4) The **range** for a quadratic is always <u>restricted</u> by either the maximum or minimum point.
- 5) <u>Intercepts</u> occur when the graph crosses the x or y axis.
- 6) The x-intercepts always correspond to the <u>factors</u> of the equation, and are also called <u>Solutions</u>, <u>roots</u>, or <u>zeros</u>.

Different Forms of the quadratic

You should also be able to find points on a quadratic graph using your calculator. Input the equation in Y=, and use the **CALC** menu.

Solving Quadratics

Solving = finding solutions/roots/zeros/x-intercepts (all the same thing)

Quadratic Modeling

Many real-life problems can be modeled using quadratic equations. This involves using information from a question to write a quadratic.

Example #1: A parabola has a y-intercept of -4 and a vertex at (3,-7). Write the equation for this quadratic

vertex = (3,-7) point (0,-4) p q

 $y = \frac{1}{3}(x-3)^2 - 7$

Example #2: A parabola has x-intercepts of -3 and 5 and goes through the point (2,15). Write the equation for this quadratic

$$y = a (x + 3)(x - 5)$$

$$15 = a (2 + 3)(2 - 5)$$

$$15 = a (5)(-3)$$

$$15 = -15q$$

$$y = -(x + 3)(x - 5)$$

$$4 = -1$$

Chapter 7 Review: Quadratics

Practice #1: Graph the equation $y = \frac{1}{2}(x-3)^2 - 4$ without a calculator.

Practice #2: Graph the equation y = -2(x - 3)(x + 1) without a calculator.

Practice #3: Graph the equation $y = -\frac{1}{2}x(x-4)$ without a calculator.

Practice #4: Analyze the graph and write an equation to match:

Vertex: (1, -4)Axis of Symmetry: $\chi = 1$ Y-Intercept: -3X-Intercepts: -1, 3Domain: $\alpha | 1 \text{ ceals}$ Range: y = -4Pattern: 1, 3, 5Equation: y = (x+1)(x-3) OR $y = (x-1)^2 - 4$ **Practice #5:** Solve by graphing: $3x^2 + 4x - 2 = 2x^2 - 2x - 7$

Method #1 - Zeros $3x^{2}+4x-2 = 2x^{2}-2x-7$ $x^{2}+6x+5=0$

Practice #6: Solve by factoring

a) $x^2 - 64 = 0$	b) $2x^2 - 16x = -24$
$\int x^2 = (64 (x+8)(x-8) =$	$0 2x^2 - 16x + 2y = 0$
$x = \pm 8$ $x = -8.8$	$2(x^2-8x+12)=0$
	2(x-2)(x-6)=0
	x=2,6
c) $x^2 - 2x - 8 = 0$	d) $2x^2 + 5x - 12 = 0$
(x+2)(x-4)=0	(2x-3)(2x+8)=0
x = -2, 4	(2x-3)(x+4)=0
	$x = \frac{3}{2}, -4$

Practice #7: Use the quadratic formula to solve. *Show all answers in EXACT form and SIMPLIFY if possible*

Practice #8: Write an equation for a parabola that has x-intercepts of -4 and 6 with a y-intercept of 50.

 $y = \alpha (x + y)(x - 6)$ 50=a (0+Y)(0-6) 50=a(-24)q=25/12 $y=\frac{25}{12}(x+y)(x-6)$

Practice #9: Write a quadratic equation in factored form for this parabola:

	1	1	7	1	6		īγ		J	1	î	÷		1-1
i	. i	i	i	i	۱	i	Ľ	ί	2	1	:	ł	i i	1
	1	T	;	;	1	5	Γ		Į]		;	· · · ·	?
	4		÷	1	1		L.,	:1	£	:	1	<u>.</u>	i	i
1	1	1	i i	ŧ.	в.	<u>.</u>		i 1	i	÷	į –	i .	i .	100
					ų.,		}						·	
	÷ .	1	:	:	11			: 7	:	:	:	:	:	:
+	·	÷	₽	<u></u>	: 	;	h	r-f-			÷	h	ŀ	
1	1	:	:	:	: 1	:		:/		1				÷
		7	<u>e</u>	·	1-1.		r	11	vt		÷			
i		<u>i</u>		<u>i</u>	1.1		L	и.	r ka	٢ <u></u>	i			
	1	:				n		7			1	[]]		; " X
<u>_</u>	+	∔	<u> </u>	.	<u> </u>	—		f	<u>.</u>		;	Į		-
:	1 -	5	:			<u> </u>	ln /				1	5	13	
*	-					4	ĽΑ	27		i		× - i		• •
÷	1	į					1		-		;			
	4	(* * *	h	****		3								
!	j	L.,										: :		
	7	112												
	4										1.3			
- i						-5					100			-
							1					÷		
:	1	: :					;							
1	4		4											• •
	1						- 9						- 1	
4	-1	()				1			A 19.4				4	-

y=2(x-1)(x+1)

Practice #10: David dives from a spring board. His height, *h* metres, above the water *t* seconds after release is given by $h = -4.9t^2 + 8.8t + 5$

a) What is the domain and range for this word problem?

fz0, h=0

b) How high is the diving board?

5m (y-intercept)

c) What is David maximum height?

8.95m

d) How long is David in the air for?

2.85

(,897, 8,9)

Practice #11: Bonnie launches a model rocket from the ground with an initial velocity of 68 m/s. The following function, h(t), can be used to model the height of the rocket, in metres, over time, t, in seconds:

 $h(t) = -4.9t^2 + 68t$

Bonnie's friend Sasha is watching from a lookout point at a safe distance. Sasha's eye level is 72m above the ground. At what time during the flight will the rocket be at Sasha's eye level?

Practice #11: A store rents an average of 750 video games each month at the current rate of \$4.50. The owners of the store want to raise the rental rate to increase the revenue to \$6000 per month. However, for every \$1 increase, they know that they will rent 30 fewer games each month because some people won't be willing to pay higher prices. What rate should they set for video game rentals?

K= (750-30)(4.50+x) 6000 (6.06 14.44 4.50+ 6.06 = \$10,56) Either would get 4.50+14.44 = \$ 18.94 Ference to \$6000

Practice #12: Johnny kicks a rugby ball in the air and it lands after 4 seconds. After 1 second the ball was 20 feet high. Write an equation to model the time vs. height of the ball.

Practice #13: Gary is competing the National Diving Championships. He does a triple-back flip off the 10m tower. If Gary's maximum height of 10.85m occurred just 0.42s after jumping, then how long will it take him to hit the water?

(0.42,10.85) $y = a(x-p)^{2} + q \qquad y = -4.8(x-y^{2})^{2} + 10.85$ $y = a(x-y^{2})^{2} + 10.85 \qquad \text{GRAPH}$ $10 = a(0-y^{2})^{2} + 10.85 \qquad \text{Zero}$ 10 -.85 = .1764aa = -4.82

Practice #14: The length of a rectangular garden is 4m more than its width. Determine the dimensions of the garden if the area is 117 m^2 .

117 = (w + 4)wA=l×w W=9 $Y_1 = 117$ l = 9+9 = 13 $Y_2 = (w+9)(w)$ Dimensions = 9×13